Vol. 124
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-09-12
Finite-Aperture Microwave Bessel Beams with Vortex Twisting, Fracturing, and Dynamic Phase-Shift Control
By
Progress In Electromagnetics Research C, Vol. 124, 53-68, 2022
Abstract
Finite-aperture microwave vortex beams of various structures in the near-, middle-, and far-field propagation zones have been simulated. The decay of external sidelobes leading to the end of non-diffractive propagation within a fraction of the near-field zone is observed. A ring source of the vortex beams with phase-shift and frequency-sweep control of angular modes and polarization patterns through the use of patch antenna arrays of varying polarization is suggested. A new form of the beam wavefront variation with azimuthal undulation has been proposed that allows one to significantly diversify and dynamically control the beam structure. The consequences of a limited number of antenna patches in a circular array have been considered. The effects of a gradual drop of radiation power along the array and the use of multiple feed points for improving the beams have been simulated.
Citation
Vladimir Borisovich Yurchenko, Mehmet Ciydem, and Sencer Koc, "Finite-Aperture Microwave Bessel Beams with Vortex Twisting, Fracturing, and Dynamic Phase-Shift Control," Progress In Electromagnetics Research C, Vol. 124, 53-68, 2022.
doi:10.2528/PIERC22071106
References

1. Shen, Y., X. Wang, Z. Xie, C. Min, X. Fu, Q. Liu, M. Gong, and X. Yuan, "Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities," Light: Science & Applications, Vol. 8, Article number: 90, 2019.
doi:10.1038/s41377-019-0194-2

2. Lee, D., H. Sasaki, H. Fukumoto, K. Hiraga, and T. Nakagawa, "Orbital Angular Momentum (OAM) multiplexing: An enabler of a new era of wireless communications," IEICE Trans. Commun., Vol. E100-B, 1044-1063, 2017.
doi:10.1587/transcom.2016SCI0001

3. Mao, F., M, Huang, J. Yang, C. Yang, T. Li, and J. Zhang, "Capacity performance of wireless OAM-based massive MIMO system," Progress In Electromagnetics Research M, Vol. 82, 149-156, 2019.
doi:10.2528/PIERM19030701

4. Chen, R., H. Zhou, M. Moretti, X. Wang, and J. Li, "Orbital angular momentum waves: Generation, detection, and emerging applications," IEEE Commun. Surveys Tuts., Vol. 22, 840-868, 2020.
doi:10.1109/COMST.2019.2952453

5. Zheng, F., Y. Chen, S, Ji, and G. Duan, "Research status and prospects of orbital angular momentum technology in wireless communication," Progress In Electromagnetics Research, Vol. 168, 113-132, 2020.
doi:10.2528/PIER20091104

6. Yagi, Y., H. Sasaki, T. Yamada, and D. Lee, "200 Gb/s wireless transmission using dual-polarized OAM-MIMO multiplexing with uniform circular array on 28 GHz band," IEEE Antennas Wireless Propag. Lett., Vol. 20, 833-837, 2021.
doi:10.1109/LAWP.2021.3065098

7. Varzakas, P., "Average channel capacity for Rayleigh fading spread spectrum MIMO systems," International Journal of Communication Systems, Vol. 19, 1081-1087, 2006.
doi:10.1002/dac.784

8. Liu, K., Y. Cheng, X. Li, H. Wang, Y. Qin, and Y. Jiang, "Study on the theory and method of vortex-electromagnetic-wave-based radar imaging," IET Microwaves Antennas and Propagation, Vol. 10, 961-968, 2016.
doi:10.1049/iet-map.2015.0842

9. Tang, B., J. Bai, and K.-Y. Guo, "Bi-target tracking based on vortex wave with orbital angular momentum," Progress In Electromagnetics Research C, Vol. 74, 123-129, 2017.
doi:10.2528/PIERC17030607

10. Fang, Y., J. Chen, P. Wang, C. Li, and W. Liu, "A novel image formation method for electromagnetic vortex SAR with orbital-angular-momentum," Progress In Electromagnetics Research M, Vol. 82, 129-137, 2019.
doi:10.2528/PIERM19011704

11. Zhang, K., Y. Wang, Y. Yuan, and S. N. Burokur, "A review of orbital angular momentum vortex beams generation: from traditional methods to metasurfaces," Appl. Sci., Vol. 10, 1015, 2020.
doi:10.3390/app10031015

12. Byun, W.-J., B. S. Kim, Y.-S. Lee, M. S. Kang, K. S. Kim, and Y. H. Cho, "Simple generation of orbital angular momentum modes with azimuthally deformed Cassegrain subreflector," Electron. Lett., Vol. 51, No. 19, 1480-1482, 2015.
doi:10.1049/el.2015.1833

13. Zheng, S., X. Hui, X. Jin, H. Chi, and X. Zhang, "Transmission characteristics of a twisted radio wave based on circular traveling-wave antenna," IEEE Trans. Antennas Propag., Vol. 63, No. 4, 1530-1536, 2015.
doi:10.1109/TAP.2015.2393885

14. Liu, W., H. Cheng, J. Tian, and S. Chen, "Diffractive metalens: From fundamentals, practical applications to current trends," Advances in Physics: X, Vol. 5, No. 1, 1742584, 2020.
doi:10.1080/23746149.2020.1742584

15. Zhang, K., Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, "Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region," Opt. Express, Vol. 26, No. 2, 1351-1360, 2018.
doi:10.1364/OE.26.001351

16. Li, J.-S. and J.-Z. Chen, "Multi-beam and multi-mode orbital angular momentum by utilizing a single metasurface," Opt. Express, Vol. 29, No. 17, 27332-27339, 2021.
doi:10.1364/OE.434206

17. Huang, H.-F. and H.-M. Huang, "Millimeter-wave wideband high efficiency circular Airy OAM multibeams with multiplexing OAM modes based on transmission metasurfaces," Progress In Electromagnetics Research, Vol. 173, 151-159, 2022.
doi:10.2528/PIER22022405

18. Mohammadi, S. M., L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thide, K. Forozesh, T. D. Carozzi, and B. Isham, "Orbital angular momentum in radio --- A system study," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 565-572, 2010.
doi:10.1109/TAP.2009.2037701

19. Mazzinghi, A., M. Balma, D. Devona, G. Guarnieri, G. Mauriello, M. Albani, and A. Freni, "Large depth of field pseudo-Bessel beam generation with a RLSA antenna," IEEE Trans. Antennas Propag., Vol. 62, 3911-3919, 2014.
doi:10.1109/TAP.2014.2324557

20. Wei, W., K. Mahdjoubi, C. Brousseau, and O. Emile, "Generation of OAM waves with circular phase shifter and array of patch antennas," Electron. Lett., Vol. 51, No. 6, 441-443, 2015.
doi:10.1049/el.2014.4425

21. Liu, K., H. Liu, Y. Qin, Y. Cheng, S. Wang, X. Li, and H. Wang, "Generation of OAM beams using phased array in the microwave band," IEEE Trans. Antennas Propag., Vol. 64, 3850-3857, 2016.
doi:10.1109/TAP.2016.2589960

22. Lin, M., Y. Gao, P. Liu, and J. Liu, "Theoretical analyses and design of circular array to generate orbital angular momentum," IEEE Trans. Antennas Propag., Vol. 65, No. 7, 3510-3519, 2017.
doi:10.1109/TAP.2017.2700160

23. Liu, D., L. Gui, Z. Zhang, H. Chen, G. Song, and T. Jiang, "Multiplexed OAM wave communication with two-OAM-mode antenna systems," IEEE Access, Vol. 7, 4160-4166, 2019.
doi:10.1109/ACCESS.2018.2886553

24. Padgett, M. J., F. M. Miatto, M. P. J. Lavery, A. Zeilinger, and R. W. Boyd, "Divergence of an orbital-angular-momentum-carrying beam upon propagation," New J. Phys., Vol. 17, 023011, 2015.
doi:10.1088/1367-2630/17/2/023011

25. Xu, J., K. Bi, R. Zhang, Y. Hao, C. Lan, K. D. McDonald-Maier, X. Zhai, Z. Zhang, and S. Huang, "A small-divergence-angle orbital angular momentum metasurface antenna," AAAS Research, Vol. 2019, Article ID 9686213, 2019.
doi:10.34133/2019/9686213

26. Fuscaldo, W., A. Benedetti, D. Comite, P. Burghignoli, P. Baccarelli, and A. Galli, "Microwave synthesis of Bessel, Bessel-Gauss, and Gaussian beams: A fully vectorial electromagnetic approach," Int. J. Microwave Wireless Technol., Vol. 13, 509-516, 2021.
doi:10.1017/S1759078720001798

27. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, New York, 1989.

28. Maffei, B., F. Noviello, J. A. Murphy, P. A. R. Ade, J.-M. Lamarre, F. R. Bouchet, J. Brossard, A. Catalano, R. Colgan, R. Gispert, E. Gleeson, C. V. Haynes, W. C. Jones, A. E. Lange, Y. Longval, I. McAuley, F. Pajot, T. Peacocke, G. Pisano, J.-L. Puget, I. Ristorcelli, G. Savini, R. Sudiwala, R. J. Wylde, and V. Yurchenko, "Planck pre-launch status: HFI beam expectations from the optical optimisation of the focal plane," Astron. Astrophys., Vol. 520, A12, 2010.
doi:10.1051/0004-6361/200912999

29. Rosset, C., V. B. Yurchenko, J. Delabrouille, J. Kaplan, Y. Giraud-Heraud, J.-M. Lamarre, and J. A. Murphy, "Beam mismatch effects in cosmic microwave background polarization measurements," Astronomy and Astrophysics, Vol. 464, No. 1, 405-415, 2007.
doi:10.1051/0004-6361:20042230

30. Yurchenko, V. B. and J.-M. Lamarre, "Efficient computation of the broadband beam sidelobes exemplified by the Planck high-frequency instrument," J. Opt. Soc. Am. A, Vol. 22, No. 12, 2838-2846, 2005.
doi:10.1364/JOSAA.22.002838

31. Yurchenko, V. B., J. A. Murphy, and J.-M. Lamarre, "Fast physical optics simulations of the multi-beam dual-reflector submillimeter-wave telescope on the ESA Planck Surveyor," International Journal of Infrared and Millimeter Waves, Vol. 22, No. 1, 173-184, 2001.
doi:10.1023/A:1010778007547

32. Hernandez-Figueroa, H. E., M. Zamboni-Rached, and E. Recami, Eds., Localized Waves, Wiley-Interscience, IEEE Press, Hoboken, N.J., 2008.
doi:10.1002/9780470168981

33. Albani, M., S. C. Pavone, M. Casaletti, and M. Ettorre, "Generation of non-diffractive Bessel beams by inward cylindrical traveling wave aperture distributions," Opt. Express, Vol. 22, No. 15, 18354-18364, 2014.
doi:10.1364/OE.22.018354

34. Ciydem, M. and E. A. Miran, "Dual polarization wideband sub-6 GHz suspended patch antenna for 5G base station," IEEE Antennas Wireless Propag. Lett., Vol. 19, 1142-1146, 2020.
doi:10.1109/LAWP.2020.2991967