IMPROVING THE BEAM EFFICIENCY OF AN OFF-SET PARABOLIC REFLECTOR ANTENNA FOR SPACE-BORNE RADIOMETRIC APPLICATIONS

D. A. Pujara
Department of Electronics & Communications Engineering
Institute of Technology
Nirma University
Ahmedabad-382481, India

S. B. Sharma and S. B. Chakrabarty
Antenna Systems Area, Space Applications Centre
Indian Space Research Organization (ISRO)
Ahmedabad-380015, India

Abstract—This paper presents a novel technique to improve the cross-polarization and the beam efficiency of an offset parabolic reflector antenna used for space borne radiometric applications. A special multi-mode primary feed (tri-mode conjugate matched feed) is used to illuminate the offset parabolic reflector antenna. The simulated data on the radiation characteristics of the offset parabolic reflector antenna with a matched feed has been compared with that of a conventional Potter horn. It is observed that the tri-mode feed suppress the unwanted high cross-polarization of an offset reflector antenna and improves the beam efficiency.

1. INTRODUCTION

Over the past three decades there has been a rapid evolution in the development of space-born microwave radiometers for remotely sensing various earth parameters from the space. Many essential geophysical parameters, such as sea-surface temperature, wind speed, wind direction, sea ice concentration and age, atmospheric water — vapor content, etc. have been successfully retrieved by the microwave radiometers. In the last few years, these data have been

Corresponding author: D. A. Pujara (dapujara@yahoo.com).
proved as key parameters for various applications such as, short-
term weather forecasting and warning, climatology and oceanography
studies, disaster management, etc. A microwave radiometer is
basically a highly sensitive receiver designed to measure the noise
power/brightness temperature radiated by a target [1]. It consists of
three basic subsystems: (i) an antenna and scan subsystem to receive
the incoming radiation, (ii) a radiometer receiver to detect and amplify
the received radiation within a specified band of frequency; and (iii)
a data control subsystem to provide timing and sequencing signals
for the antenna and radiometer subsystems, and to perform digitizing,
multiplexing, and formatting functions on the radiometric data to form
the output data stream [2]. However, it has been observed that the
overall design of an antenna plays a very important role in achieving the
specified radiometric accuracy, sensitivity and the desired performance
of the radiometer in the space.

Offset parabolic reflector is the most preferred antenna system
This includes, reduced aperture blockage, high isolation between the
antenna and the primary feed, suppressed side lobe levels, and options
for large focal length to diameter (F/D) ratios [8]. However, the offset
configuration has some disadvantages, like higher cross polarization
when illuminated by a linearly polarized feed and beam squinting in
case of a circularly polarized feed. The high cross polarization reduces
the main beam efficiency and results into poor spatial resolution,
radiometric sensitivity, and measurement accuracy.

Beam efficiency is a very fundamental antenna parameter used
to judge the ability of an antenna system to discriminate between
the signals received through its main lobe and those through the
minor lobes [9]. Very high beam efficiency of the order of 95–98%
ensures minimum contributions from the sidelobes and effectively high
spatial resolution. To meet this challenging requirement of high beam
efficiency (> 95%), it is necessary to minimize the cross polarization
level added by the offset geometry. There are two techniques to reduce
the unwanted high cross polarization introduced by an offset reflector.
The first technique suggests the design of an offset reflector antenna
with a relatively larger F/D ratio. However, in case of radiometric
applications, it may not be possible to increase the F/D ratio because
of mechanical constraints like space availability, weight limitations,
etc. The alternative practical solution is to use a very special type
of primary feed, known as matched feed/tri-mode conjugate feed in
place of a conventional Potter horn type feed to illuminate the offset
reflector.

The concept of matched feed was proposed by Rudge and
Adatia [10]. However, very little information regarding the design of matched feed is found in [10]. Recently, the authors have carried out very specific investigations on the design and development of the matched feed, and reported its performance with a circularly polarized offset parabolic reflector antenna [11]. Tri-mode matched feed uses a higher order TE_{21} mode and a TM_{11} mode with a fundamental TE_{11} mode to compensate the cross polarization introduced by the offset geometry. In case of an offset reflector configuration, the cross-polar performance of a matched feed as a primary feed is even better than a corrugated feed, as a corrugated feed provides a good match to the only copolar fields but not to the cross polar fields. Shee and Smith [12] have presented an algorithm to suppress the cross polarization of single offset reflector antenna illuminated by a cluster of matched feed horns. In [12], it is shown that the matched feed horns provide significant improvement in cross polarization as compared to a dual-mode potter horn. In a recent paper [13], the matched feed has been used to illuminate the gravitationally balanced back- to- back reflector. To the best of authors’ knowledge, no data on beam efficiency improvement using the tri-mode matched feed has been reported in the open literature.

In this paper, improvement in the cross-polar performance and in the beam efficiency of an offset parabolic reflector using a tri-mode matched feed has been discussed. The secondary radiation patterns of an offset reflector antenna with a matched feed horn and a conventional Potter horn have been obtained and the cross polarization data for both the cases have been compared. Followed this, the extensive simulations were carried out to find out the beam efficiency of a tri-mode matched feed illuminated offset parabolic reflector antenna. Finally, the variation of beam efficiency as a function of half-cone angle is presented.

2. ANALYSIS

The offset reflector geometry under consideration is shown in Fig. 1. The expressions of the polar and the azimuthal radiation pattern components of the TE and the TM waves, for a tri-mode matched feed horn are obtained as,

\[E_\theta = E_{\theta TE_{11}} + \alpha_1 \cdot E_{\theta TM_{11}} + j \cdot \alpha_2 \cdot E_{\theta TE_{21}} \]
\[E_\phi = E_{\phi TE_{11}} + j \cdot \alpha_2 \cdot E_{\phi TE_{21}} \]

where, α_1 and α_2 are the arbitrary constants defining the relative power in TM_{11} and TE_{21} mode with respect to the fundamental TE_{11} mode.
Figure 1. The offset reflector geometry under consideration.

For a tri-mode matched feed the values of constants α_1 and α_2 are required to be evaluated numerically for minimum cross polarization. The expressions for E_{TE11}^θ, E_{TE21}^θ, E_{TM11}^θ, E_{TE11}^Φ, and E_{TE21}^Φ can be obtained using the general expressions for E_θ and E_Φ from [14]. After obtaining the required expressions for the matched feed, the secondary radiation pattern for an offset parabolic reflector can be estimated using the mathematical model proposed by Rudge [15]. Finally, using the co and cross polarization data of far field secondary radiation patterns, the beam efficiency can be calculated for a specific value of half cone angle (θ_1) using the expression [16],

$$\text{Beam Efficiency (\%) } = \frac{P_{co}(\theta_1)}{P_{co}(\pi) + P_{xp}(\pi)} \cdot 100\% \quad (3)$$

where,

$$P_{co}(\theta) = \int_0^\theta \int_0^{2\pi} |G_{co}(\theta, \phi)|^2 \cdot \sin \theta \cdot d\theta \cdot d\phi = \text{Co pol. power} \quad (4)$$

$$P_{xp}(\theta) = \int_0^\theta \int_0^{2\pi} |G_{xp}(\theta, \phi)|^2 \cdot \sin \theta \cdot d\theta \cdot d\phi = \text{Cross pol. power} \quad (5)$$

The total power integral is given as,

$$P = P_{co}(\pi) + P_{xp}(\pi) \quad (6)$$

It is apparent from (3), that by reducing the cross polarization, it is possible to improve the beam efficiency.
3. RESULTS

A MATLAB program has been developed for computation of the secondary radiation pattern of an offset parabolic reflector. The F/D ratio of 0.6 and the offset angle of 50° were selected for the offset geometry under investigation. First, the far field radiation patterns were obtained for an offset reflector illuminated by the two different feeds. The results for the linearly polarized conventional Potter horn illuminated offset reflector are shown in Fig. 2. Fig. 3 shows the co and the cross polar patterns of the proposed matched feed illuminated offset reflector. Comparison of Fig. 2 and Fig. 3 shows that a tri-mode matched feed provides a minimum of 20 dB additional cross polarization suppression as compared to a conventional Potter horn. Next, using the expressions of beam efficiency, described in previous section, the MATLAB codes were developed to calculate the beam efficiency. The simulated results of beam efficiency were obtained as
Figure 4. Beam efficiency as a function of half-cone beam angle.

a function of half-cone beam angle (θ₁) and are plotted in Fig. 4. As expected, the improvement in beam efficiency is achieved in case of a matched feed illuminated offset reflector, as compared to a conventional dual-mode Potter horn fed offset reflector.

4. CONCLUSION

In this paper, the improvement in the cross polarization as well as the beam efficiency of an offset parabolic reflector have been discussed. Extensive simulations were carried out and the results for a matched feed illuminated offset reflector were found very encouraging. Thus, it is concluded that the offset reflector antenna in conjunction with a tri-mode matched feed can suppress the unwanted cross-polarization to a significant level and improve the beam efficiency. It is expected that such an antenna system will become the most suitable option for the future microwave radiometers.

ACKNOWLEDGMENT

The authors sincerely thank the Director, Space Applications Centre (SAC), Ahmedabad, India for encouragement to carry out this work and to the engineers of Microwave Sensors Antenna Division, Antenna Systems Area, SAC for their help and necessary support. D. A. Pujara would like to thank the management of Nirma University of Science and Technology, Ahmedabad, India for sponsoring him to SAC to carry out his doctoral research.
REFERENCES

