Numerical Analysis of Resonant Characteristics of Graphene Rectangular Microstrip Patch Antenna with Roof Top Functions

Chouaib Chettah1, * and Ouarda Barkat2, 3

Abstract—In this paper, an analytical model is presented to investigate the resonant characteristics of a graphene rectangular microstrip patch antenna. To take into account the graphene film patch in the full-wave spectral domain technique, surface complex impedance is considered. This impedance is determined by using Kubo formula. A set of roof top sub-domain basis functions are employed to model the current density distribution on the graphene rectangular microstrip patch. The simulation results demonstrate that the designed structure can provide excellent tunable properties in Terahertz frequency region by varying different chemical potentials and relaxation times of graphene film. Variations of dimension of rectangular patch on the resonant frequency and bandwidth of a graphene rectangular microstrip antenna are presented. Finally, numerical results for the dielectric substrates effects on the operating frequencies are also presented. The analysis is validated by comparing the results with a specific example in the literature.

1. INTRODUCTION

Nowadays, wireless communication systems have received enormous interest worldwide in recent decade [1–3]. Rectangular microstrip patch antennas (GRMPAs) have been very popular because of their use in various wireless applications due to their small size, light weight, miniaturized size, wide bandwidth, high efficiency, and low cost [4–6]. They are currently designed to operate at higher frequencies, often at the terahertz (THz) spectrum, to increase the throughput of wireless links with features of low latency and improving the system performance. Researchers have explored the use of graphene for a reconfigurable antenna operating at terahertz frequencies [7–11]. Graphene is attracting great scientific interest thanks to its exceptional electrical and mechanical properties. It is a two-dimensional material formed from a single layer of carbon atoms arranged in a honeycomb crystal lattice. In addition, graphene has very high electrical conductivity thanks to the ballistic transport of electrons. Indeed, electrons move in graphene at a speed that can reach 200 times more than its speed in silicon at room temperature. In particular, these materials make it possible to design nano-antennas up to 100 times more miniature than the smallest current antennas [12–15]. These antennas have the particularity of transmitting data at very high speeds (several hundred gigabits per second) over distances of a few millimeters with low energy consumption. These new antennas could be exploited to improve the communication between various components. Let us quote the example of transfer of the data between the microprocessor and the memory in the smartphones or in the computers. They could still be used as communication devices with wireless nano-sensors, as in the case of RFID systems [16–19]. Recently, there have been a number of investigations of resonant frequencies of GRMPAs. These investigations are based on CST and HFSS computer aided design tools for determining the tunable frequencies [20–25]. However, the
accuracy of these approximate models is limited and only suitable for analyzing simple, regularly shaped antenna or thin substrates. Full-wave spectral method is extensively used in microstrip analysis and design. This method gives better results than approximate techniques [26, 27]. In the current paper, we have developed an analytical model for the analysis of GRMPA which has been published little. In the spectral method, the roof top sub-domain basis functions are introduced to expand the unknown current on the GRMPA. The boundary condition for the electric field was used to derive an integral equation for the electric current. Compared to the exiting antenna design, the numerical results, obtained from the implementation of our calculations, have shown the improvement of the bandwidth of graphene rectangular microstrip GRMPA.

2. MATHEMATICAL FORMULATION

Figure 1 shows the geometry of the GRMPA, and the rectangular patch dimensions are the length L_p and width W_p. A rectangular microstrip is printed on a dielectric substrate of thickness d characterized by a permittivity ε_r, and the permeability will be taken as μ_0.

![Figure 1. Geometry of graphene rectangular microstrip on uniaxial substrate.](image)

In order to find the dyadic Green’s function of the structure, the calculus of transverse field components in the two layer is the first step to start. We will suppose a space time dependence of all the components of the kind $e^{i(k_s \cdot r - \omega t)}$.

The full-wave moment method has been applied extensively and is now a standard approach for analysis of microstrip geometry. In the spectral domain the transverse field components in the two layer can be obtained using the Fourier transform formulation [28].

$$
\tilde{E}(k_s, z) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} E(x, y, z)e^{-i(k_x x + k_y y)} dx dy
$$

(1)

$$
\tilde{H}(k_s, z) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} H(x, y, z)e^{-i(k_x x + k_y y)} dx dy
$$

(2)

Starting from Maxwell’s equations in the Fourier transform domain and by using the boundary conditions and condition of continuity of E and H fields, after some simple algebraic manipulation, we can find that the relationship between the patch current and the electric field on the patch is given by [29]:

$$
\tilde{E}(k_s) = \tilde{G}(k_s) \cdot \tilde{J}(k_s)
$$

(3)

where $\tilde{J}(k_s)$ is the current on the patch, and $\tilde{G}(k_s)$ is the spectral dyadic Green’s function, whose expression is given by:

$$
\tilde{G}(k_s) = \begin{bmatrix} G_{xx} & G_{xy} \\ G_{yx} & G_{yy} \end{bmatrix} = \frac{1}{k_s^2} \begin{bmatrix} k_x & k_y \\ k_y & -k_x \end{bmatrix} \tilde{Q} \begin{bmatrix} k_x & k_y \\ k_y & -k_x \end{bmatrix}
$$

(4)

where
\(\vec{k}_s \) is the transverse wave vector given by \(\vec{k}_s = k_x \cdot \vec{x} + k_y \cdot \vec{y} \);
\(k_x \) and \(k_y \) are the wave numbers corresponding to \(x \) and \(y \) directions, respectively.

\(Q \) is given by:

\[
Q = \begin{bmatrix}
Q_{xx} & 0 \\
0 & Q_{yy}
\end{bmatrix}
\quad (5)
\]

\(Q_{xx} \) and \(Q_{yy} \) are determined by:

\[
Q_{xx} = \frac{k_z}{\omega \varepsilon_0} \cdot \frac{k_r}{D_e} \cdot \sin (k_r \cdot d)
\quad (6)
\]

\[
Q_{yy} = \frac{1}{\omega \varepsilon_0} \cdot \frac{k_r^2}{D_h} \cdot \sin (k_r \cdot d)
\quad (7)
\]

where

\[
D_e = \varepsilon_r k_z \cdot \cos(k_r^2 \cdot d) + ik_r \cdot \sin(k_r^2 \cdot d);
\]

\[
D_h = k_r \cdot \cos(k_r^2 \cdot d) + ik_z \cdot \sin(k_r^2 \cdot d);
\]

\[
k_r^2 = \varepsilon_r k_0^2 - k_z^2, k_0^2 = \omega^2 \varepsilon_0 \mu_0;
\]

\[
k_z^2 = k_0^2.
\]

The surface current \(\vec{J}(r_s) \) on the patch can be expanded into a series of known basis functions \(J_{xn}(r_s) \) and \(J_{ym}(r_s) \):

\[
\vec{J}(r_s) = \sum_{n=1}^{N} a_n \begin{bmatrix}
J_{xn}(r_s) \\
0
\end{bmatrix} + \sum_{m=1}^{M} b_m \begin{bmatrix}
0 \\
J_{ym}(r_s)
\end{bmatrix}
\quad (8)
\]

where \(a_n \) and \(b_m \) are the unknown coefficients to be determined in the \(x \) and \(y \) directions, respectively. The main problem is how to select the basis functions associated with the complete orthogonal set of TM and TE modes of rectangular microstrip antenna. It is prudent to assume basis functions which approximate the actual current distributions. The current density \(J \) is modeled as a summation of piecewise linear subdomain basis functions known as rooftop basis functions. These functions are characterized by their triangular shape along the direction of current \(\mathbf{n} \) and rectangular cross section in the orthogonal direction, mathematically; the sub-domain basis functions for the components of the current are described as [30]:

\[
J_x(r_s) = \sum_{m=1}^{M} \sum_{n=1}^{N+1} J_{xn} \bigwedge_m \bigcap_n (x) \biguplus_m \bigcap_n (y)
\quad (9)
\]

\[
J_y(r_s) = \sum_{m=1}^{N+1} \sum_{n=1}^{N} J_{yn} \bigwedge_m \bigcap_n (y) \biguplus_m \bigcap_n (x)
\quad (10)
\]

where the functions \(\bigwedge \) and \(\biguplus \) are “triangle” and “pulse” functions, respectively. The current density functions for the spectral domain can be written as:

\[
\vec{J}_x(k_s) = \sum_{m=1}^{M} \sum_{n=1}^{N+1} \tilde{J}_{xn} F_x^{mn} (k_s)
\quad (11)
\]

\[
\vec{J}_y(k_s) = \sum_{m=1}^{M} \sum_{n=1}^{N+1} \tilde{J}_{yn} F_y^{mn} (k_s)
\quad (12)
\]

where

\[
F_x^{mn} (k_s) = \Delta x \Delta y \left[\sin \left(\frac{k_y \Delta y}{2} \right) \right] \left[\sin \left(\frac{k_x \Delta x}{2} \right) \right]^2 e^{-ik_x x_m - ik_y y_n + ik_y \Delta y} \quad (13)
\]
To include the effect of the graphene of the microstrip antenna in full-wave analysis, the conductivity is determined by using Kubo formula. Graphene is modeled as a sheet conductor whose surface conductivity consists of two terms, intraband conductivity and interband conductivity. However, in the Terahertz-frequency band, the first term dominates the value of total conductivity whereas the second term has no significant effect on the overall surface conductivity within this band. Hence, the conductivity of graphene can be expressed by using only intraband term, which can be evaluated as [31–33]:

$$\sigma(\omega) = \sigma_{\text{intra}}(\omega) + \sigma_{\text{inter}}(\omega)$$ \hspace{1cm} (15)$$

where

$$\sigma_{\text{intra}}(\omega) = \frac{2q_e^2 K_b T i}{\pi \hbar^2 (\omega + i\tau^{-1})} \ln \left(\frac{2|\mu_c|}{2|\mu_c| + (\omega - i\tau^{-1}) \hbar} \right)$$ \hspace{1cm} (16)$$

$$\sigma_{\text{inter}}(\omega) = \frac{q_e^2}{4\pi \hbar} \ln \left(\frac{2|\mu_c| - (\omega - i\tau^{-1}) \hbar}{2|\mu_c| + (\omega - i\tau^{-1}) \hbar} \right)$$ \hspace{1cm} (17)$$

where K_b is the Boltzmann constant, \hbar the reduced Planck’s constant, q_e the electron charge, ω the angular frequency, τ the relaxation time, T the temperature, and μ_c the chemical potential.

$$Z_s = \frac{1}{\sigma}$$ \hspace{1cm} (18)$$

Z_s: is the equivalent surface impedance of the graphene;

σ: frequency dependent surface conductivity computed using Eq. (16).

The integral equation for the currents on the graphene rectangular microstrips is then formulated using the dyadic Green’s function and forcing the tangential electric field to vanish on the patch.

$$\tilde{E}(r_s) = \frac{1}{(2\pi)^2} \int dk_x F(k_x, r_s) \left(\tilde{G}(k_x) - \tilde{Z_s} \right) \tilde{J}(k_x) = 0$$ \hspace{1cm} (19)$$

where

$$\tilde{Z_s} = \begin{vmatrix} Z_s & 0 \\ 0 & Z_s \end{vmatrix}$$

Substituting Eq. (5) into Eq. (20) and using the selected basis functions as testing functions, we obtain the following homogeneous matrix equation:

$$\begin{bmatrix} (\tilde{B}_{kn})_{N\times N} & (\tilde{B}_{km})_{N\times M} \\ (\tilde{B}_{ln})_{M\times N} & (\tilde{B}_{lm})_{M\times M} \end{bmatrix} \cdot \begin{bmatrix} (a_n)_{N\times 1} \\ (b_m)_{M\times 1} \end{bmatrix} = 0$$ \hspace{1cm} (20)$$

where

$$\tilde{B}_{kn} = \int_{-\infty}^{+\infty} dk_x \frac{1}{k_x^2} (G_{xx} - Z_s) \tilde{J}_{xk}(-k_x) \tilde{J}_{xn}(k_x)$$ \hspace{1cm} (21)$$

$$\tilde{B}_{km} = \int_{-\infty}^{+\infty} dk_x \frac{k_x k_y}{k_x^2} G_{xy} \tilde{J}_{xk}(-k_x) \tilde{J}_{ym}(k_x)$$ \hspace{1cm} (22)$$

$$\tilde{B}_{ln} = \int_{-\infty}^{+\infty} dk_x \frac{k_x k_y}{k_x^2} G_{yx} \tilde{J}_{yl}(-k_x) \tilde{J}_{xn}(k_x)$$ \hspace{1cm} (23)$$

$$\tilde{B}_{lm} = \int_{-\infty}^{+\infty} dk_x \frac{1}{k_x^2} (G_{yy} - Z_s) \cdot \tilde{J}_{yl}(-k_x) \cdot \tilde{J}_{ym}(k_x)$$ \hspace{1cm} (24)$$
Therefore, for the existence of nontrivial solutions, the determinant of Eq. (21) must be zero.

\[
\det(B(f)) = 0
\]

(25)

In general, the root of Eq. (26) is the characteristic equation for the complex resonant frequency.

\[
f = f_r + i \cdot f_i
\]

(26)

where

- \(f_r \): is the resonant frequency;
- \(f_r/2 \cdot f_i \): is the quality factor Q of the antenna.

3. RESULTS AND DISCUSSION

In order to observe the effect of conductivity of the graphene \(\sigma(\omega) \) on frequency behavior, we have simulated, in Fig. 2, the real and imaginary parts of the total conductivity of the graphene, according to Eq. (15) as a function of the frequency, for several different chemical potentials \(\mu_c \) (0.1 to 0.4 eV).

The calculated \(\sigma(\omega) \), as shown in Fig. 2(a), is found in low frequency range, and the differences of real part of graphene conductivity among the four cases of \(\mu_c \) are significant. At higher frequencies \(f \geq 1.8 \text{THz} \), the imaginary part of graphene conductivity becomes significant and must be considered. From the results of Fig. 2(b), it can be seen that the effect of varying the frequency on the real part of \(\sigma(\omega) \) is significant only for values below the frequency 2 THz.

![Figure 2](image)

Figure 2. Real and Imaginary parts of total graphene conductivity at room temperature \((T = 300 \text{K})\) for different values of: (a) Chemical potential \(\mu_c \) with \(\tau = 0.1 \times 10^{-12} \text{s} \), (b) Relaxation time \(\tau \) with \(\mu_c = 0.0 \text{eV} \).
Figure 3. The graphs that compare the resonant frequencies (FR) and bandwidth (BW) obtained through the spectral method and previously published results.

The aim in this section is to validate our results, and the codes have been developed with the MATLAB language. In order to validate our results, we have proceeded to a comparison with cases presented in the literature. In Fig. 3 and Table 1, we have calculated the resonant frequencies \((f_r)\) and bandwidth (BW) of GRMPA structure with a single layer for the mode \(T \! M_{01}\), for different values of chemical potential \((\mu_c)\) and \((\varepsilon_r)\). The considered structure was modeled by using the spectral method. The comparison of \(f_r\) and BW was conducted for three different values of relative permittivity \((\varepsilon_r)\), which have been suggested in [9] Table 1. Note that the agreement is very good. It is observed from Fig. 3 that in order to enhance the bandwidth of the GRMPA structure, the chemical potential value must be adjusted. Thus it can be concluded that the effect of chemical potential \((\mu_c)\) on the resonant frequency and bandwidth of a GRMPA structure cannot be ignored and must be taken into account in the design stage.

In this section, typical numerical results, for the resonant frequency \((f_r)\) and bandwidth (BW) of some examples of GRMPA structure, are presented and analyzed.

3.1. Effect of Relaxation Time \((\tau)\)

Figure 4 shows the influence of the relaxation time \((\tau)\) and chemical potential \((\mu_c)\) on the variation of the resonance frequency and the bandwidth, for a patch of rectangular shape with dimensions \((W_p = 28.79 \, \mu m, L_p = 23.33 \, \mu m, t = 4.7 \, nm)\).

The graphene patch is printed on a substrate (DUROID) of permittivity \(\varepsilon_r = 2.20\) and thickness \(d = 3 \, nm\). It is clear from Table 2 and Fig. 4 that the resonance frequency increases rapidly until the chemical potential \((\mu_c)\) reaches the value 0.35 eV. After this value, the increase in the resonance frequency becomes less important. Bandwidth results are also presented. We note that the bandwidth increases with increasing chemical potential and the relaxation time \((\tau)\). A good agreement was found
Table 1. Comparison of simulated and calculated resonant frequencies and bandwidth of rectangular Microstrip Patch Antenna, with $W_p = 28.79\, \mu m$, $L_p = 23.33\, \mu m$ and $\varepsilon_r = (2.20, 3.00, 3.50)$.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DUROID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\varepsilon_r = 2.20$</td>
<td>0.1</td>
<td>2.500</td>
<td>2.466</td>
<td>0.386</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>2.783</td>
<td>2.842</td>
<td>0.457</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>2.861</td>
<td>2.886</td>
<td>0.467</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>2.950</td>
<td>2.899</td>
<td>0.476</td>
</tr>
<tr>
<td>ARLON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\varepsilon_r = 3.00$</td>
<td>0.1</td>
<td>2.250</td>
<td>2.085</td>
<td>0.340</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>2.565</td>
<td>2.504</td>
<td>0.440</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>2.570</td>
<td>2.565</td>
<td>0.450</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>2.620</td>
<td>2.584</td>
<td>0.460</td>
</tr>
<tr>
<td>POLYIMIDE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\varepsilon_r = 3.50$</td>
<td>0.1</td>
<td>2.130</td>
<td>2.020</td>
<td>0.325</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>2.310</td>
<td>2.368</td>
<td>0.425</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>2.410</td>
<td>2.421</td>
<td>0.450</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>2.460</td>
<td>2.438</td>
<td>0.495</td>
</tr>
</tbody>
</table>

Figure 4. Resonant frequency and bandwidth versus chemical potential for different values of relaxation time.

between our results and those of [9]. On the other hand, the resonance frequency decreases when the relaxation time increases.

3.2. Effect of Dielectric Constant of Substrate (ε_r)

In this subsection, the effects of dielectric constant of substrate (ε_r) on the resonant frequency and the bandwidth are determined as function of chemical potential (μ_c) for different values of dielectric constant ($\varepsilon_r = 2.10, 2.20, 3.00, \text{and } 3.38$) of a GRMPA structure with dimensions $W_p = 28.79\, \mu m$, $L_p = 23.33\, \mu m$, and $d = 3\, \mu m$. It is evident from Table 3 and Fig. 5 that the resonant frequency and bandwidth of (GRMPA) structure decrease with the increase of ε_r. In addition, there is an improvement in bandwidth.
Table 2. Resonant frequency and bandwidth versus chemical potential for different values of relaxation time.

<table>
<thead>
<tr>
<th>μ_c [eV]</th>
<th>$\tau = 0.05$ ps</th>
<th>$\tau = 0.10$ ps</th>
<th>$\tau = 0.15$ ps</th>
<th>$\tau = 0.20$ ps</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR [THz]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>2.536</td>
<td>2.467</td>
<td>2.467</td>
<td>2.428</td>
</tr>
<tr>
<td>0.2</td>
<td>2.895</td>
<td>2.842</td>
<td>2.798</td>
<td>2.696</td>
</tr>
<tr>
<td>0.3</td>
<td>2.951</td>
<td>2.886</td>
<td>2.831</td>
<td>2.716</td>
</tr>
<tr>
<td>0.4</td>
<td>2.968</td>
<td>2.899</td>
<td>2.839</td>
<td>2.720</td>
</tr>
<tr>
<td>BW [THz]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>0.245</td>
<td>0.373</td>
<td>0.437</td>
<td>0.461</td>
</tr>
<tr>
<td>0.2</td>
<td>0.371</td>
<td>0.461</td>
<td>0.468</td>
<td>0.477</td>
</tr>
<tr>
<td>0.3</td>
<td>0.436</td>
<td>0.467</td>
<td>0.488</td>
<td>0.540</td>
</tr>
<tr>
<td>0.4</td>
<td>0.461</td>
<td>0.477</td>
<td>0.539</td>
<td>0.635</td>
</tr>
</tbody>
</table>

Table 3. Resonant frequency and bandwidth versus chemical potential for different values of dielectric constant of substrate.

<table>
<thead>
<tr>
<th>μ_c [eV]</th>
<th>TEFLON ($\varepsilon_r = 2.10$)</th>
<th>DUROID ($\varepsilon_r = 2.2$)</th>
<th>ROGER RO 3003 ($\varepsilon_r = 3.00$)</th>
<th>ROGER RO 4003C ($\varepsilon_r = 3.38$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR [THz]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>2.637</td>
<td>2.466</td>
<td>2.085</td>
<td>2.202</td>
</tr>
<tr>
<td>0.2</td>
<td>3.071</td>
<td>2.842</td>
<td>2.503</td>
<td>2.368</td>
</tr>
<tr>
<td>0.3</td>
<td>3.132</td>
<td>2.886</td>
<td>2.565</td>
<td>2.421</td>
</tr>
<tr>
<td>0.4</td>
<td>3.151</td>
<td>2.899</td>
<td>2.584</td>
<td>2.438</td>
</tr>
<tr>
<td>BW [THz]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>0.381</td>
<td>0.373</td>
<td>0.326</td>
<td>0.330</td>
</tr>
<tr>
<td>0.2</td>
<td>0.491</td>
<td>0.461</td>
<td>0.434</td>
<td>0.398</td>
</tr>
<tr>
<td>0.3</td>
<td>0.506</td>
<td>0.467</td>
<td>0.455</td>
<td>0.427</td>
</tr>
<tr>
<td>0.4</td>
<td>0.512</td>
<td>0.477</td>
<td>0.459</td>
<td>0.464</td>
</tr>
</tbody>
</table>

as chemical potential (μ_c) increases. These behaviors agree with those discovered theoretically obtained by the electromagnetic field simulation software CST for resonant frequency and bandwidth of GRMPA structure [8, 9].

Figure 5. Resonant frequency and bandwidth versus chemical potential for different values of dielectric constant of substrate.
3.3. Effect of Width of patch (Wp)

In Figure 6 and Table 4, effects of width of patch rectangular (Wp) on the resonant frequencies and the bandwidth have been calculated for various chemical potentials. This can be obtained by having length \(L_p = 23.33 \mu m \), dielectric substrate of thickness \(d = 3 \mu m \) fabricated using DURROD \((\varepsilon_r = 2.20)\), and the relaxation time of conductivity of Graphene is \(\tau = 10^{-13} \) s. The resonant frequencies and the bandwidth of GRMPA structure for the fundamental mode \(TM_{01} \) are computed by the present approach. It is clear from these results that the resonance frequency and bandwidth increase when the chemical potential \((\mu_c) \) increases and are stable at \(\mu_c \) higher than 0.3 eV, but they are decreased when the width of patch increases.

Table 4. Resonant frequency and bandwidth versus chemical potential for different values of width of patch.

<table>
<thead>
<tr>
<th>(\mu_c) [eV]</th>
<th>(W_p = 20 \mu m)</th>
<th>(W_p = 30 \mu m)</th>
<th>(W_p = 40 \mu m)</th>
<th>(W_p = 50 \mu m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR [THz]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>2.405</td>
<td>2.245</td>
<td>2.063</td>
<td>1.957</td>
</tr>
<tr>
<td>0.2</td>
<td>3.054</td>
<td>2.619</td>
<td>2.297</td>
<td>2.141</td>
</tr>
<tr>
<td>0.3</td>
<td>3.113</td>
<td>2.660</td>
<td>2.327</td>
<td>2.166</td>
</tr>
<tr>
<td>0.4</td>
<td>3.127</td>
<td>2.671</td>
<td>2.336</td>
<td>2.173</td>
</tr>
<tr>
<td>BW [THz]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>0.373</td>
<td>0.334</td>
<td>0.267</td>
<td>0.255</td>
</tr>
<tr>
<td>0.2</td>
<td>0.483</td>
<td>0.449</td>
<td>0.386</td>
<td>0.343</td>
</tr>
<tr>
<td>0.3</td>
<td>0.499</td>
<td>0.475</td>
<td>0.432</td>
<td>0.361</td>
</tr>
<tr>
<td>0.4</td>
<td>0.505</td>
<td>0.480</td>
<td>0.446</td>
<td>0.365</td>
</tr>
</tbody>
</table>

Figure 6. Resonant frequency and bandwidth versus chemical potential for different values of dielectric constant of substrate.

3.4. Effect of Length of Patch (Lp)

We indicated that the same parameters were used in the previous part, where we fixed the width (Wp) and modified the length (Lp) of the GRMPA structure. In Fig. 7 and Table 5, the dependence of the resonant frequency and bandwidth on the patch length (Lp) is presented. We observe that contrary to the variation of the width of the patch, the resonance frequency and bandwidth increase when the width of patch increases.
Table 5. Resonant frequency and bandwidth versus chemical potential for different values of length of patch.

<table>
<thead>
<tr>
<th>μ_c [eV]</th>
<th>$Lp/Wp = 2/3$</th>
<th>$Lp/Wp = 3/4$</th>
<th>$Lp/Wp = 4/5$</th>
<th>$Lp/Wp = 5/6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR [THz]</td>
<td>0.1</td>
<td>2.288</td>
<td>2.555</td>
<td>2.651</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>2.712</td>
<td>2.928</td>
<td>3.113</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>2.756</td>
<td>2.975</td>
<td>3.179</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>2.768</td>
<td>2.989</td>
<td>3.200</td>
</tr>
<tr>
<td>BW [THz]</td>
<td>0.1</td>
<td>0.303</td>
<td>0.336</td>
<td>0.373</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>0.416</td>
<td>0.438</td>
<td>0.461</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>0.445</td>
<td>0.446</td>
<td>0.467</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>0.451</td>
<td>0.458</td>
<td>0.477</td>
</tr>
</tbody>
</table>

Table 6. Resonant frequency and bandwidth versus chemical potential for different values of length of patch.

<table>
<thead>
<tr>
<th>μ_c [eV]</th>
<th>$d = 1 \mu m$</th>
<th>$d = 2 \mu m$</th>
<th>$d = 3 \mu m$</th>
<th>$d = 4 \mu m$</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR [THz]</td>
<td>0.1</td>
<td>2.561</td>
<td>2.499</td>
<td>2.466</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>3.048</td>
<td>2.887</td>
<td>2.842</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>3.091</td>
<td>2.934</td>
<td>2.886</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>3.102</td>
<td>2.947</td>
<td>2.899</td>
</tr>
<tr>
<td>BW [THz]</td>
<td>0.1</td>
<td>0.331</td>
<td>0.373</td>
<td>0.414</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>0.455</td>
<td>0.487</td>
<td>0.512</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>0.488</td>
<td>0.504</td>
<td>0.519</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>0.496</td>
<td>0.509</td>
<td>0.530</td>
</tr>
</tbody>
</table>

Figure 7. Resonant frequency and bandwidth versus chemical potential for different values of patch length.

3.5. Effect of Substrate Thickness (d)

In Table 6 and Fig. 8, we investigate the influence of the chemical potential and the thickness of the substrate on the resonant frequency and bandwidth of the GRMPA structure. The rectangular patch
Figure 8. Resonant frequency and bandwidth versus chemical potential for different values of patch length.

of size $L_p = 23.33 \, \mu m$, $W_p = 28.79 \, \mu m$ is made of a thin graphene film with $\tau = 10^{-13} \, s$. It is observed that the resonant frequency increases with increasing chemical potential for low substrate thicknesses. On the other hand, the bandwidth is very important for very high substrate thickness values.

Table 7 reports our numerical results for the resonant frequency and bandwidth of GRMPA structure isotropic substrate which have been compared with previously simulated published results [9, 34, 35]. It is a very encouraging result of GRMPA structure compared to others rectangular patch antenna bandwidth. This is due to several properties of complex material graphene, and it can be easily integrated and miniaturized.

Table 7. Comparison table of resonant frequency and bandwidth with previous research work.

<table>
<thead>
<tr>
<th></th>
<th>$F_r , [\text{THz}]$</th>
<th>$BW , [\text{THz}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphene proposed</td>
<td>2.020</td>
<td>0.353</td>
</tr>
<tr>
<td>Graphene [9]</td>
<td>2.130</td>
<td>0.325</td>
</tr>
<tr>
<td>FR4 [34]</td>
<td>2.45×10^{-3}</td>
<td>2.40×10^{-6}</td>
</tr>
<tr>
<td>Arlon [35]</td>
<td>0.693</td>
<td>4.50×10^{-6}</td>
</tr>
</tbody>
</table>

4. CONCLUSION

A spectral domain approach has been used for the numerical calculation of the characteristics of a graphene rectangular microstrip patch antenna (GRMPA). Initially, we use an integral method of moment, which enable us to exploit the spectral tensor of green. The resolution of the integral equations of the electric field leads to a system of homogenous equations. We have calculated the frequency of resonance complexes of antenna. The obtained results show that the resonance frequency of antenna varies significantly with the chemical potential (μ_c) and relaxation time (τ) of conductivity of graphene, which are found strongly dependent on the permittivity of substrate. The properties of the GRMPA structure were stable at chemical potential higher than 0.35 eV. Also computations show that the dimension of rectangular patch can be adjusted to have the maximum operating frequency of the GRMPA structure. On the other hand, the bandwidth increases monotonically with increasing the substrate thickness. The calculated results have been compared with simulated ones available in the literature, and excellent agreement has been found.
REFERENCES

