An Improved Design of Dual-Band 3 dB 180° Directional Coupler

Bayaner Arigong1, 4, *, Jin Shao1, 4, Mi Zhou1, 4, Han Ren1, 4, Jun Ding1, Qianli Mu2, Yang Li3, Song Fu4, Hyoungsoo Kim1, and Hualiang Zhang1

Abstract—A novel design concept of dual-band 180° hybrid ring coupler is presented in this paper. Coupler is a key element in front-end building blocks of wireless transceiver systems such as industrial systems and consumer electronic devices. The proposed design is realized by combining multiple arbitrary length transmission lines operating at two frequencies with one dual-band 180° phase shifter. The even-odd mode method is applied to derive the design equations for proposed dual-band 3 dB 180° directional coupler. Based on the analysis, it is found that the realizable frequency ratio of the proposed coupler is very flexible (i.e., the ratio between the two operating frequencies). Moreover, the 180° phase shifter features arbitrary characteristic impedance (i.e., its characteristic impedance can be arbitrarily chosen), which further ensures the easy implementation of proposed structures. To prove the design concept, full-wave electromagnetic simulations are performed to design a dual-band ring hybrid coupler working at 0.9 and 1.98 GHz. An experimental prototype is fabricated on Rogers RT/Duroid 5880 board. The measurement results match well with the theoretical and numerical ones.

1. INTRODUCTION

The dual-band/multiband and wideband transceiver architectures [1–3] have attracted great interest in electronic industries in recent years since they can simultaneously support multiple frequency bands for consumers to meet their requirement of multi-task and multi-function operations in modern wireless communication systems. The passive microwave circuits such as transmission lines [4, 5], phase shifters [6], filters [7–9], duplexers [10], power dividers [11–15], baluns [16, 17] and directional couplers [18, 19] are key components for radio frequency (RF) transceiver systems. Specifically, the hybrid couplers are fundamental and important components [20–22], which are widely used in microwave, millimeter-wave, and even terahertz circuits. For example, in RF front-end circuits, the hybrid couplers are indispensable components for mixers, balanced mixers, balanced power amplifiers, low noise amplifiers, and beam forming phase array circuits. Among all the hybrid couplers, the conventional 180° coupler (or rat-race coupler) [4] is constructed by transmission lines with entire ring circumference of 1.5λ at its operating frequency, which is too big for practical applications such as in the CMOS technology. In the past, several works [23–25] have been published to design compact 3 dB 180° directional couplers. One of the approaches is focusing on using folded lines or loaded lines to reduce the physical area, and another method is applying lumped components such as capacitors and inductors to miniaturize the coupler size. However, all of these methods suffer from performance degradation of the circuits, and they are operating at single frequency. Therefore, it is difficult to design dual-band 180° couplers based on them. To address this issue, several papers [26, 27] presented dual-band 180° coupler designs. One of the methods is applying shunted stubs on each section of the coupler to realize dual-band operation.
Another solution is adding single shunted stub to the center of the longest branch line (among the four branches of the coupler) for dual-band applications. However, the frequency ratio (i.e., ratio between the two working frequencies) of these coupler designs is still limited to a small range. Also the design theory of them is complex.

In this paper, a novel design of dual-band rat-race coupler which is composed of simple transmission lines and phase shifters has been considered. The proposed design has the following characteristics: 1) the same transmission line is applied to all four branches of the coupler to support dual-band operations (more details will be discussed in Section 2.2); 2) only one dual-band line with multiple transmission line sections (i.e., a dual-band 180° phase shifter) is applied in the proposed dual-band 180° coupler; 3) the characteristic impedance of the transmission line-based dual-band 180° phase shifter can be arbitrary. All these features have led to the dual-band rat-race coupler with flexible frequency ratios due to the flexibility in choosing the electrical lengths of transmission lines.

The whole paper is organized as follows. In Section 2, the basic analysis method and equations are presented to explain the design procedure of proposed dual-band rat-race coupler. In Section 3, to verify the proposed design concept, numerical simulations are conducted to design a dual-band coupler with a frequency ratio of 2.2. The experiment is performed on the dual-band rat-race coupler with four identical branch lines and one 180° phase shifter to validate the design theory. The conclusion is presented in the last section.

2. THEORETICAL ANALYSIS

The topology of proposed dual-band 3 dB 180° directional coupler is shown in Fig. 1. In this general schematic, four identical transmission line sections and a 180° phase shifter are applied. Here, \(Y \) denotes the characteristic admittance of each branch, and \(\Theta \) represents the electrical length of each section as labeled in Fig. 1. Half-wavelength transmission line with arbitrary characteristic impedance is employed to realize the 180° phase shifter. To explain the working principle of this coupler, we will first derive design equations for a generalized single-band 3 dB 180° hybrid coupler (as shown in Fig. 2). Based on this design, the design theory of the proposed dual-band 180° coupler is presented.

2.1. Theoretical Analysis of a Generalized Single-Band 180° Hybrid Ring Coupler

The structure of the single-band generalized 180° hybrid coupler is shown in the left of Fig. 2, where the length and impedance of each branch have been marked. Based on the even-odd mode analysis, this 4-port network is decomposed into two 2-port networks as shown in the right of Fig. 2. Here we assume \(a = \tan(\beta l_1/2) \), \(b = \tan(\beta l_3/2) \), \(C = \cos \beta l_2 \), and \(D = \sin \beta l_2 \), where \(l_1 = \lambda/n \), \(l_2 = \lambda/2 \), and
Under the odd-mode excitation, the $ABCD$ matrix under the even-mode excitation is:

$$
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix}_e =
\begin{bmatrix}
1 & 0 \\
-jY_1 a & 1
\end{bmatrix}
\begin{bmatrix}
C & \frac{1}{2} D \\
\frac{1}{2} j Y_2 D
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
jY_3 b & 1
\end{bmatrix}
\begin{bmatrix}
C - \frac{Y_2 a D}{j} \\
-j \left[Y_1 a C - \frac{1}{j} Y_2 a b D + (Y_2 D + Y_3 b C) \right]
\end{bmatrix}
\begin{bmatrix}
\frac{1}{2} D \\
\frac{1}{2} Y_2 D
\end{bmatrix}
$$

(1)

Under the odd-mode excitation, the $ABCD$ matrix is:

$$
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix}_o =
\begin{bmatrix}
1 & 0 \\
-jY_1 a & 1
\end{bmatrix}
\begin{bmatrix}
C & \frac{1}{2} D \\
\frac{1}{2} j Y_2 D
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
jY_3 b & 1
\end{bmatrix}
\begin{bmatrix}
C + \frac{DY_3}{Y_2} \\
-j \left[Y_1 C + \frac{1}{Y_2} \left(\frac{Y_3 b D}{ab} - (Y_2 D + Y_3 C) \right) \right]
\end{bmatrix}
\begin{bmatrix}
\frac{1}{2} D \\
\frac{1}{2} Y_2 D
\end{bmatrix}
$$

(2)

$$
S_{11}^e = \frac{A + \frac{B}{Z_0} - CZ_0 - D}{A + \frac{B}{Z_0} + CZ_0 + D}
\begin{bmatrix}
2Y_0 Y_2 \\
2CY_0 Y_2 - (bDY_0 Y_3 + aDY_0 Y_1) + j \left[aCY_1 Y_2 - abDY_1 Y_3 - DY_0^2 + DY_2^2 + bCY_2 Y_3 \right]
\end{bmatrix}
$$

$$
S_{21}^e = \frac{2(AD - BC)}{A + \frac{B}{Z_0} + CZ_0 + D}
\begin{bmatrix}
2Y_0 Y_2 \\
2CY_0 Y_2 - (bDY_0 Y_3 + aDY_0 Y_1) + j \left[aCY_1 Y_2 - abDY_1 Y_3 - DY_0^2 + DY_2^2 + bCY_2 Y_3 \right]
\end{bmatrix}
$$

(3)
\[S_{41} = \frac{1}{2} \left\{ \frac{aD_{0}Y_{1} - bD_{0}Y_{3} - j \left[aC_{1}Y_{2} - abD_{1}Y_{3} - D\theta_{0}^{2} + D\theta_{0}^{2} + bC_{2}Y_{3} \right]}{2C_{0}Y_{2} - (bD_{0}Y_{3} + aD_{0}Y_{1}) + j \left[aC_{1}Y_{2} - abD_{1}Y_{3} + D\theta_{0}^{2} + D\theta_{0}^{2} + bC_{2}Y_{3} \right]} - \frac{-\frac{b}{a}D_{0}Y_{1} + \frac{D}{b}Y_{0}Y_{3} + j \left[\frac{C}{a}Y_{1}Y_{2} + \frac{D}{ab}Y_{1}Y_{3} + D\theta_{0}^{2} - D\theta_{0}^{2} + \frac{C}{b}Y_{2}Y_{3} \right]}{2C_{0}Y_{2} + (\frac{D}{b}Y_{0}Y_{3} + \frac{D}{a}Y_{0}Y_{1}) - j \left[\frac{C}{a}Y_{1}Y_{2} + \frac{D}{ab}Y_{1}Y_{3} - D\theta_{0}^{2} - D\theta_{0}^{2} + \frac{C}{b}Y_{2}Y_{3} \right]} \right\} \right\]

Based on Equations (1), (2), the corresponding \(S_{11}^{e}, S_{21}^{e}, S_{11}^{o} \) and \(S_{21}^{o} \) can be calculated and are given in Equation (3). With the \(S_{11}^{e}, S_{21}^{e}, S_{11}^{o} \) and \(S_{21}^{o} \), the four-port network \(S \)-parameters can be derived as:

\[
\begin{align*}
S_{11} &= \frac{1}{2} (S_{11}^{e} + S_{11}^{o}) \quad (4a) \\
S_{21} &= \frac{1}{2} (S_{21}^{e} + S_{21}^{o}) \quad (4b) \\
S_{31} &= \frac{1}{2} (S_{21}^{e} - S_{21}^{o}) \quad (4c) \\
S_{41} &= \frac{1}{2} (S_{11}^{e} - S_{11}^{o}) \quad (4d)
\end{align*}
\]

The derived equations for these \(S \)-parameters are again given in Equation (3) (at the bottom of it). Since the hybrid coupler is a reciprocal and symmetric 4-port network, the following three conditions need to be satisfied for its proper operation.

1) Two output ports and two input ports are isolated from each other. Thus \(S_{31} = S_{42} = 0 \).
2) The input port needs to be matched. Thus \(S_{11} = 0 \).
3) The 3dB coupler features equal power division at the output port 2 and 4. Thus \(|S_{21}| = |S_{41}| \).
4) Based on these conditions, we can generalize design formulas as shown below.

\[
\begin{align*}
-bY_{3} - aY_{1} &= \frac{1}{b}Y_{3} + \frac{1}{a}Y_{1} \\
\left(a + \frac{1}{a} \right) CY_{1}Y_{2} + \left(b + \frac{1}{b} \right) CY_{2}Y_{3} &= \left(ab - \frac{1}{ab} \right) D\theta_{1}Y_{3} \\
\left(\frac{1}{a} - a \right) CY_{1}Y_{2} + \left(ab + \frac{1}{ab} \right) D\theta_{1}Y_{3} + \left(\frac{1}{b} - b \right) CY_{2}Y_{3} + 2D\theta_{0}^{2} - 2D\theta_{0}^{2} &= 0 \\
4Y_{2} &= \left(a + \frac{1}{a} \right) D\theta_{1} - \left(b + \frac{1}{b} \right) D\theta_{3}
\end{align*}
\]

From Equation (5), we can demonstrate that \(Y_{1} = Y_{2} \) since \(ab = -1 \) (since there is a 90° phase difference between \(a \) and \(b \)), which means that the opposite arms \(l_{1} \) and \(l_{3} \) have the same characteristic admittance. By substituting this condition into (6), (7) and (8), the following two equations are derived.

\[
\begin{align*}
(a + b) CY_{1}Y_{2} &= D \left(Y_{0}^{2} - Y_{1}^{2} - Y_{2}^{2} \right) \\
2Y_{2} &= (a - b)D\theta_{1}
\end{align*}
\]

Utilizing the above two equations, the generalized single-band 3dB 180° directional coupler with arbitrary branch lengths can be designed.

2.2. Analysis of the Proposed Dual-Band 180° Hybrid Coupler

Based on the single-band 180° coupler, a new dual-band 180° coupler is designed. The general structure of the new coupler is shown in Fig. 1. Since it is composed of four identical transmission lines and a 180° phase shifter, the design principle for these components to support dual-band operations is presented as follows. For the four identical transmission lines, the \(ABCD \) matrix is:

\[
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix} = \begin{bmatrix}
\cos \theta & j\sin \theta \\
-jY \sin \theta & \cos \theta
\end{bmatrix}
\]
(where Θ is the electrical length and Y the characteristic admittance of the transmission line). For the purpose of dual-band operation, the necessary condition is:

$$\theta_{f2} = m\pi \pm \theta_{f1}$$ \hspace{1cm} (12)

Here Θf1 and Θf2 are electrical lengths of the line at the two working frequencies (Θf1 < Θf2), and m = 1, 2, 3, ... For the electrical lengths of these transmission lines, the following relation is always held at two operating frequencies:

$$\frac{\theta_{f1}}{\theta_{f2}} = \frac{f_1}{f_2}$$ \hspace{1cm} (13)

By substituting (12) into (13), it can be further derived as:

$$\theta_{f1} = \frac{m\pi}{1 \pm \frac{f_2}{f_1}} = \frac{m\pi}{1 \pm R}$$ \hspace{1cm} (14)

where R = f2/f1 and m = 1, 2, 3, ... According to (14), once the frequency ratio R is selected, the electrical length of the transmission line will be determined. For the proposed coupler to operate at two frequency bands simultaneously, we have employed the same length for two branches (the electrical length of the transmission line will be determined. For the proposed coupler to operate at the proposed dual-band 180° phase shifter, the parameters of the dual-band phase shifter can be obtained.

For the dual-band 180° phase shifter used in the proposed 180° coupler, its general structure is shown in Fig. 3. It is realized by cascading two dual-band 90° transmission lines. The ABCD matrix of each dual-band 90° transmission line is given in (15):

$$\begin{bmatrix} A_T & B_T \\ C_T & D_T \end{bmatrix} = \begin{bmatrix} \cos \Theta_a + jZ_a \sin \Theta_a & jZ_a \sin \Theta_a \\ jZ_a \sin \Theta_a & \cos \Theta_a \end{bmatrix} \begin{bmatrix} \frac{1}{1 + \tan \Theta_a} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \Theta_a + jZ_a \sin \Theta_a & jZ_a \sin \Theta_a \\ jZ_a \sin \Theta_a & \cos \Theta_a \end{bmatrix} = \begin{bmatrix} 0 & \pm jY_p \\ \pm jY_p & 0 \end{bmatrix}$$ \hspace{1cm} (15)

where Za, Zb, Θa, and Θb represent the characteristic impedances and electrical lengths of the series and shunted stubs as shown in Fig. 3. Yp is the characteristic admittance of equivalent λ/4 transmission line (Note: Yp can be arbitrary values as will be explained in the end of this section).

For the purpose of dual-band operation of the transmission line, the design equations are derived from (15) and the results are given in (16)–(19).

$$Z_a \tan \theta_{af1} = \pm \frac{1}{Y_p}$$ \hspace{1cm} (16)

$$\tan \theta_b = \frac{Z_b (\cos^2 \Theta_a - \sin^2 \Theta_a)}{Z_a \sin \Theta_a \cos \Theta_a}$$ \hspace{1cm} (17)

$$\theta_{af1} = \frac{N\pi}{1 \pm \frac{f_2}{f_1}} = \frac{N\pi}{1 \pm R}$$ \hspace{1cm} (18)

$$\theta_{bf1} = \frac{M\pi}{1 \pm \frac{f_2}{f_1}} = \frac{M\pi}{1 \pm R}$$ \hspace{1cm} (19)

Here Θaf1 and Θbf1 are electrical lengths of series and shunted stubs at the first design frequencies (f1); Yp can be any value, N = 1, 2, 3, ..., and M = 1, 2, 3, By solving Equations (16)–(19), the design parameters of the dual-band phase shifter can be obtained.

Based on the above discussions and design equations (e.g., Equations (9), (10), (14), (16)–(19)), the proposed dual-band 180° 3 dB directional coupler can be designed.

Finally, an important feature of the proposed dual-band coupler, namely the realizable frequency ratio range, is discussed. In practice, this parameter is often limited by the realizable impedance range of the transmission lines (i.e., microstrip line in this paper). In our analysis, we have assumed that...
Table 1. Relation between two branches (i.e., \textit{Y}_1 and \textit{Y}_2).

<table>
<thead>
<tr>
<th>\textit{l}_1</th>
<th>\textit{Y}_1</th>
<th>\textit{l}_2</th>
<th>\textit{Y}_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>\lambda/12</td>
<td>0.4772 \sim 31.665</td>
<td>\lambda/6.3421 \sim \lambda/4</td>
<td>0.8944 \sim 52.9691</td>
</tr>
<tr>
<td>\lambda/10</td>
<td>0.5067 \sim 36.222</td>
<td>\lambda/6.8228 \sim \lambda/4</td>
<td>0.8621 \sim 49.0629</td>
</tr>
<tr>
<td>\lambda/8</td>
<td>0.5774 \sim 161.45</td>
<td>\lambda/8 \sim \lambda/4</td>
<td>0.8165 \sim 161.45</td>
</tr>
<tr>
<td>\lambda/6</td>
<td>0.6547 \sim 57.626</td>
<td>\lambda/15.06 \sim \lambda/4</td>
<td>0.756 \sim 26.966</td>
</tr>
<tr>
<td>\lambda/4</td>
<td>0.7071</td>
<td>\lambda/4</td>
<td>0.7071</td>
</tr>
</tbody>
</table>

Figure 3. General topology of the 180° dual-band phase shifter used in the proposed coupler.

Figure 4. Calculated normalized impedances of different branch lines used in the proposed coupler at different frequency ratios.

the impedance is within the range of 20 to 140 Ω (according to our analysis, these impedances can be realized using the conventional microstrip transmission lines). Following the design procedure, the calculated branch line impedance \textit{Z} (\textit{Z} = 1/\textit{Y} in Fig. 1), and series and shunted impedances of the 180° phase shifter (\textit{Z}_a and \textit{Z}_b in Fig. 3) are plotted in Fig. 4 under different frequency ratios (all of these values have been normalized to 50 Ω). It is observed that the frequency ratio from 1.2 to 2.9 can be supported. Moreover, it is worth to point out that the characteristic impedance (i.e., 1/\textit{Y}_p in (21)) of the dual-band 180° phase shifter can be arbitrary. As long as its total phase shift is 180° at the two design frequencies, it will guarantee the performance of the proposed dual-band coupler. This property has ensured that the dual-band 180° phase shifter can support a large range of frequency ratio (since for a specific frequency ratio, we can find a suitable \textit{Y}_p that is convenient for dual-band operation). For the four identical transmission lines (with an admittance of \textit{Y} as shown in Fig. 1), its length is within the range of \lambda/8 – \lambda/4 (as discussed in Section 2.2). According to Equation (20), it can support the frequency ratio from 1 to 3 when \textit{m} is 1 in Equation (20). For a frequency ratio beyond that, a different \textit{m} can be applied to meet the requirement. Overall, the proposed dual-band coupler can support a wide range of frequency ratio with a simple structure.

3. SIMULATION AND MEASUREMENT RESULTS

To verify the design theory of the proposed coupler, a dual-band coupler working at 0.9/1.98 GHz is designed. The electromagnetic simulations results of the designed coupler are shown in Fig. 5. In Fig. 5(a), the simulated insertion losses \textit{S}_{21}, \textit{S}_{41}, \textit{S}_{32} and \textit{S}_{34} are plotted. It is found that they are around –3 dB at two design frequencies. In Fig. 5(b), the simulated return loss and isolation are shown. As desired, at the two working frequencies, the return loss is better than 45 dB and the isolation is better than 50 dB. The phase responses are shown in Figs. 5(c), (d). As desired, at the two working frequencies, \textit{S}_{21} and \textit{S}_{41} are equal-phase, and \textit{S}_{32} and \textit{S}_{34} have a 180° phase difference.
Figure 5. Simulation results of the dual-band 3 dB 180° directional coupler working at 0.9 GHz and 1.98 GHz. (a) Insertion losses. (b) Return loss and isolation. (c) Phase difference between the two output ports (when signal is input from port 1). (d) Phase difference between the two output ports (when signal is input from port 3).

Figure 6. Photo of the fabricated dual-band rat-race coupler.

The designed coupler has been fabricated and characterized experimentally (using Rogers RT/Duroid 5880 board ($\varepsilon_r = 2.2$, $H = 0.787$ mm, and $\tan \delta = 0.0009$)). Fig. 6 shows the photo of the fabricated dual-band 3 dB 180° directional coupler. The design parameters are: $Z = 56.62 \Omega$, $\theta = 56.25^\circ$, $Z_a = 30.07 \Omega$, $\theta_a = 56.25^\circ$, $Z_b = 87.63 \Omega$, $\theta_b = 112.5^\circ$, where the parameters are calculated at the lower design frequency 0.9 GHz. The port impedance is 50 Ω. The measurement results are shown in Fig. 7. A summary of measured performance of this coupler is listed in Table 2. From the experiment results, it is found that the two operating bands are slightly shifted from 0.9/1.98 GHz to 0.94/2.06 GHz.
Figure 7. Measurement results of the designed dual-band 3 dB 180° directional coupler. (a) Insertion losses. (b) Return loss and isolation. (c) Phase difference between the two output ports (when signal is input from port 1). (d) Phase difference between the two output ports (when signal is input from port 3).

Table 2. Measured performance of proposed dual-band rat-race coupler.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>940 MHz</th>
<th>2.06 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input return loss</td>
<td>22.5 dB</td>
<td>18.6 dB</td>
</tr>
<tr>
<td>Isolation</td>
<td>29.2 dB</td>
<td>26.4 dB</td>
</tr>
<tr>
<td>Insertion loss (S_{21})</td>
<td>3.2 dB</td>
<td>3.6 dB</td>
</tr>
<tr>
<td>Insertion loss (S_{41})</td>
<td>3.0 dB</td>
<td>3.5 dB</td>
</tr>
<tr>
<td>$\angle S_{21} - \angle S_{41}$</td>
<td>2.57°</td>
<td>1.3°</td>
</tr>
<tr>
<td>Insertion loss (S_{32})</td>
<td>3.0 dB</td>
<td>3.6 dB</td>
</tr>
<tr>
<td>Insertion loss (S_{34})</td>
<td>3.2 dB</td>
<td>3.4 dB</td>
</tr>
<tr>
<td>$\angle S_{32} - \angle S_{34}$</td>
<td>180.9°</td>
<td>177.1°</td>
</tr>
</tbody>
</table>

which is due to the fabrication errors. From Table 2, the S_{31} (isolation) is less than -26 dB at two design frequencies, and the S_{11} is less than -18 dB at both frequency bands. All the measured insertion losses are around 3 dB at the design frequencies.

Moreover, when the signal is input from port 1, the phase difference between port 2 and port 4 is close to 0° (at most 2.57°). When the signal is input from port 3, the phase difference between port 2 and port 4 is close to 180° (177.1° in the worst case). Considering the amplitude and phase mismatch, the bandwidth of the designed coupler is larger than 50MHz at both two working frequency bands.
(Here, the tolerances of amplitude and phase mismatches are 1 dB and 5°, respectively). The amplitude
imbalance and phase imbalance are caused by several reasons such as fabrication tolerance, junction
loss and variance of substrate parameters. The performance of this work and state-of-the-art dual-band
180° directional couplers is listed in Table 3. In comparison, the proposed design can provide a superior
frequency ratio with large design flexibility. Moreover, the dual-band couplers implemented in [26, 27]
are based on the conventional rat-race coupler structure. The dual-band coupler presented in this work
is implemented based on a generalized rat-race coupler structure, which leads to a more compact size.

Table 3. Performance comparison of this work with the state-of-art dual-band rat-race coupler.

<table>
<thead>
<tr>
<th>Reference</th>
<th>[26]</th>
<th>[27]</th>
<th>This work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency ratio</td>
<td>1.75 ~ 2.75</td>
<td>1.7 ~ 2.75</td>
<td>1.2 ~ 2.9</td>
</tr>
<tr>
<td>ε_r</td>
<td>3.38</td>
<td>6.15</td>
<td>2.2</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>50 MHz</td>
<td>140 MHz</td>
<td>50 MHz</td>
</tr>
<tr>
<td>Technique</td>
<td>Adding Short shunt stub</td>
<td>Adding open shunt stub</td>
<td>Applying dual-band phase shifter</td>
</tr>
<tr>
<td>Size</td>
<td>$0.25\lambda_0 \times 0.5\lambda_0$</td>
<td>$0.4\lambda_0 \times 0.78\lambda_0$</td>
<td>$0.35\lambda_0 \times 0.35\lambda_0$</td>
</tr>
<tr>
<td>λ_0 is the free-space wavelength @1.45 GHz</td>
<td>λ_0 is the free-space wavelength @1 GHz</td>
<td>λ_0 is the free-space wavelength @0.9 GHz</td>
<td></td>
</tr>
</tbody>
</table>

4. CONCLUSION

In this paper, a new design of dual-band 3 dB 180° directional coupler is presented. Based on the
even-odd mode method, explicit design equations are derived for the proposed design. It is found that a
wide range of frequency ratio can be achieved by the proposed dual-band rat-race coupler. Applying the
derived design equations, an experimental prototype is designed, simulated, and characterized. Good
agreement between the simulation and measurement results has been achieved. It is expected that this
new coupler can be readily applied to various dual-band/multiband wireless industrial products.

REFERENCES

3. Xie, H., X. Wang, L. Lin, H. Tang, Q. Fang, H. Zhao, S. Wang, F. Yao, A. Wang, Y. Zhou, and
B. Qin, “A 52-mW 3.1–10.6-GHz fully integrated correlator for IR-UWB transceivers in 0.18 µm

