PIER Letters
 
Progress In Electromagnetics Research Letters
ISSN: 1937-6480
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 4 > pp. 167-172

A NOVEL RADIATION PATTERN AND FREQUENCY RECONFIGURABLE MICROSTRIP ANTENNA ON A THIN SUBSTRATE FOR WIDE-BAND AND WIDE-ANGLE SCANNING APPLICATION

By J. Ou Yang

Full Article PDF (127 KB)

Abstract:
A novel radiation pattern and frequency reconfigurable microstrip antenna is introduced in this paper. This antenna is designed on a thin substrate for the application of conformal phased antenna future. The proposed antenna make the operating frequency range 6 times larger than that of a simple rectangular microstrip antenna, and make the beam covering from -70∼70 compared with the traditional rectangular microstrip antenna beam which only covers -50∼50. It is potential on the application of wide-band and wideangle.

Citation:
J. Ou Yang, "A Novel Radiation Pattern and Frequency Reconfigurable Microstrip Antenna on a Thin Substrate for Wide-Band and Wide-Angle Scanning Application," Progress In Electromagnetics Research Letters, Vol. 4, 167-172, 2008.
doi:10.2528/PIERL08101201
http://www.jpier.org/pierl/pier.php?paper=08101201

References:
1. Pues, H. F. and A. R. Van De Capelle, "An impedancematching technique for increasing the bandwidth of the microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 37, No. 11, 1345-1354, November 1989.
doi:10.1109/8.43553

2. Aanaandan, C. K., P. Mohanan, and K. G. Nair, "Broad-band gap coupling microstrip antenna," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 10, 1581-1585, October 1990.
doi:10.1109/8.59771

3. Fang, S.-T., K.-L. Wong, and T.-W. Chiou, "Bandwidth enhancement of inset-microstrip-line-fed equilateral-triangular microstrip antenna," Electronics Letters, Vol. 34, No. 23, 2184-2185, November 12, 1998.
doi:10.1049/el:19981578

4. Bernhard, J. T., R. Wang, R. Clark, and P. Mayes, "Stacked reconfigurable antenna elements for space based radar applications," Proc. IEEE/URSI Antennas Propagat. Soc. Int. Symp., Vol. 1, 158-161, 2001.

5. Maloney, J. C., M. P. Kesler, L. M. Lust, L. N. Pringle, T. L. Fountain, and P. H. Harms, "Switched fragmented aperture antennas," PROC. IEEE Antennas Propagat. Soc. Int. Symp., Vol. 1, 310-313, 2000.

6. Vinoy, K. J., K. A. Jose, V. K. Varadan, and V. V. Varadan, "Hilbert curve fractal antennas with reconfigurable characteristics," Proc. EEE MTT-S Int. Microw. Symp. Digest, Vol. 1, 381-384, 2001.

7. Huff, G. H., J. Feng, S. Zhang, and J. T. Bernhard, "A novel radiation pattern and frequency reconfigurable single turn square spiral microstrip antenna," IEEE Microwave Wireless Components Letter, Vol. 13, 57-59, February 2003.
doi:10.1109/LMWC.2003.808714

8. Ansari, J. A. and R. B. Ram, "E-shaped patch symmetrically loaded with tunnel diodes for frequency Agile/broadband operation," Progress In Electromagnetics Research B, Vol. 1, 29-42, 2008.
doi:10.2528/PIERB07101202

9. Wang, Y. J. and C. K. Lee, "Compact and broadband microstrip patch antenna for the 3g Imt-2000 handsets applying styrofoam and shorting-posts," Progress In Electromagnetics Research, Vol. 47, 75-85, 2004.
doi:10.2528/PIER03100901

10. Fayad, H. and P. Record, "Multi-feed dielectric resonator antenna with reconfigurable radiation pattern," Progress In Electromagnetics Research, Vol. 76, 341-356, 2007.
doi:10.2528/PIER07071204


© Copyright 2010 EMW Publishing. All Rights Reserved