Vol. 5

Latest Volume
All Volumes
All Issues
2008-12-23

Broadband Aperture-Coupled Microstrip Antennas with Low Cross Polarization and Back Radiation

By Chai-Hui Lai, Tuan-Yung Han, and Tsair-Rong Chen
Progress In Electromagnetics Research Letters, Vol. 5, 187-197, 2008
doi:10.2528/PIERL08111805

Abstract

The paper presents the performances of microstrip patch antennas excited by the aperture-coupling feed that is composed of a T-shaped microstrip feed line and an annular-ring slot. Because the annular-ring slot is designed at a full-wavelength resonant mode, a broad impedance bandwidth can be obtained by combing the resonant modes of the coupling slot and radiating patch; moreover, a low cross polarization is also observed, especially around the direction with maximum gain. For reducing the considerable back radiation induced by the resonant coupling aperture, additional slots are introduced and embedded along the perimeter of the annular-ring slot. Experimental results show that the reformed coupling slot can improve the front-to-back ratio of the aperture-coupled microstrip antenna by more than 5 dB. Simulation analyses are also performed to support the measured results.

Citation


Chai-Hui Lai, Tuan-Yung Han, and Tsair-Rong Chen, "Broadband Aperture-Coupled Microstrip Antennas with Low Cross Polarization and Back Radiation," Progress In Electromagnetics Research Letters, Vol. 5, 187-197, 2008.
doi:10.2528/PIERL08111805
http://www.jpier.org/PIERL/pier.php?paper=08111805

References


    1. Khodae, G. F., J. Nourinia, and C. Ghobadi, "A practical miniaturized U-slot patch antenna with enhanced bandwidth," Progress In Electromagnetics Research B, Vol. 3, 47-62, 2008.
    doi:10.2528/PIERB07112201

    2. Boutayeb, H., T. A. Denidni, and M. Nedil, "Bandwidth widening techniques for directive antennas based on partially reflecting surfaces," Progress In Electromagnetics Research, Vol. 74, 407-419, 2007.
    doi:10.2528/PIER07060905

    3. Abdelaziz, A. A., "Bandwidth enhansment of microstrip antenna," Progress In Electromagnetics Research, Vol. 63, 311-317, 2006.
    doi:10.2528/PIER06053001

    4. Pirhadi, A., M. Hakkak, and F. Keshmiri, "Using electromagnetic bandgap superstrate to enhance the bandwidth of probe-FED microstrip antenna," Progress In Electromagnetics Research, Vol. 61, 215-230, 2006.
    doi:10.2528/PIER06021801

    5. Liu, H. and X.-F. Hu, "Input impedance analysis of a microstrip annular-ring antenna with a thick substrate," Progress In Electromagnetics Research, Vol. 12, 177-204, 1996.

    6. Huynh, T., K. F. Lee, and R. Q. Lee, "Crosspolarisation characteristics of rectangular patch antennas," Electronics Lett., Vol. 24, 463-464, 1998.
    doi:10.1049/el:19880313

    7. Chen, Z. N. and M. Y. W. Chia, "Experimental study on radiation performance of probe-fed suspended plate antennas," IEEE Trans. Antennas Propaga., Vol. 51, 1964-1971, 2003.
    doi:10.1109/TAP.2003.814746

    8. Li, P., H. W. Lai, K. M. Luk, and K. L. Lau, "A wideband patch antenna with cross-polarization suppression," IEEE Antennas Wireless Propaga. Lett., Vol. 3, 211-214, 2004.
    doi:10.1109/LAWP.2004.834937

    9. Chen, Z. N. and M. Y. W. Chia, "Broad-band suspended probefed plate antenna with low cross-polarization levels," IEEE Trans. Antennas Propaga., Vol. 51, 345-346, 2003.
    doi:10.1109/TAP.2003.809062

    10. Lai, H. W. and K. M. Luk, "Wideband patch antenna fed by printed meandering strip," Microwave and Opt. Technol. Lett., Vol. 50, 188-192, 2008.
    doi:10.1002/mop.23047

    11. Petosa, A., A. Ittipiboon, and N. Gagnon, "Suppression of unwanted probe radiation in wideband probe-fed microstrip patches," Electronics Lett., Vol. 35, 355-357, 1999.
    doi:10.1049/el:19990269

    12. Chin, C. H. K., Q. Xue, H. Wong, and X. Y. Zhang, "Broadband patch antenna with low cross-polarisation," Electronics Lett., Vol. 43, 137-138, 2007.
    doi:10.1049/el:20073567

    13. Hsu, W. H. and K. L. Wong, "A dual capacitively fed broadband patch antenna with reduced cross-polarization radiation," Microwave and Opt. Technol. Lett., Vol. 26, 169-171, 2000.
    doi:10.1002/1098-2760(20000805)26:3<169::AID-MOP10>3.0.CO;2-X

    14. Chen, Z. N. and M. Y. W. Chia, "A novel center-slot-fed suspended plate antenna," IEEE Trans. Antennas Propaga., Vol. 51, 1407-1410, 2003.
    doi:10.1109/TAP.2003.814001

    15. Targonski, S. D., R. B. Waterhouse, and D. M. Pozar, "Design of wide-band aperture-stacked patch microstrip antennas," IEEE Trans. Antennas Propaga., Vol. 46, 1245-1251, 1998.
    doi:10.1109/8.719966

    16. Chiou, T. W. and K. L. Wong, "Broad-band dual-polarized single microstrip patch antenna with high isolation and low cross polarization," IEEE Trans. Antennas Propaga., Vol. 50, 399-401, 2002.
    doi:10.1109/8.999635

    17. Shin, H. S. and N. Kim, "Wideband and high-gain one-patch microstrip antenna coupled with H-shaped aperture," Electronics Lett., Vol. 38, 1072-1073, 2002.
    doi:10.1049/el:20020735

    18. Pozar, D. M. and S. D. Targonski, "Improved coupling for aperture coupled microstrip antennas," Electronics Lett., Vol. 27, 1129-1131, 1991.
    doi:10.1049/el:19910705