PIER Letters
Progress In Electromagnetics Research Letters
ISSN: 1937-6480
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 5 > pp. 187-197


By C.-H. Lai, T.-Y. Han, and T.-R. Chen

Full Article PDF (1,021 KB)

The paper presents the performances of microstrip patch antennas excited by the aperture-coupling feed that is composed of a T-shaped microstrip feed line and an annular-ring slot. Because the annular-ring slot is designed at a full-wavelength resonant mode, a broad impedance bandwidth can be obtained by combing the resonant modes of the coupling slot and radiating patch; moreover, a low cross polarization is also observed, especially around the direction with maximum gain. For reducing the considerable back radiation induced by the resonant coupling aperture, additional slots are introduced and embedded along the perimeter of the annular-ring slot. Experimental results show that the reformed coupling slot can improve the front-to-back ratio of the aperture-coupled microstrip antenna by more than 5 dB. Simulation analyses are also performed to support the measured results.

C.-H. Lai, T.-Y. Han, and T.-R. Chen, "Broadband Aperture-Coupled Microstrip Antennas with Low Cross Polarization and Back Radiation," Progress In Electromagnetics Research Letters, Vol. 5, 187-197, 2008.

1. Khodae, G. F., J. Nourinia, and C. Ghobadi, "A practical miniaturized U-slot patch antenna with enhanced bandwidth," Progress In Electromagnetics Research B, Vol. 3, 47-62, 2008.

2. Boutayeb, H., T. A. Denidni, and M. Nedil, "Bandwidth widening techniques for directive antennas based on partially reflecting surfaces," Progress In Electromagnetics Research, Vol. 74, 407-419, 2007.

3. Abdelaziz, A. A., "Bandwidth enhansment of microstrip antenna," Progress In Electromagnetics Research, Vol. 63, 311-317, 2006.

4. Pirhadi, A., M. Hakkak, and F. Keshmiri, "Using electromagnetic bandgap superstrate to enhance the bandwidth of probe-FED microstrip antenna," Progress In Electromagnetics Research, Vol. 61, 215-230, 2006.

5. Liu, H. and X.-F. Hu, "Input impedance analysis of a microstrip annular-ring antenna with a thick substrate," Progress In Electromagnetics Research, Vol. 12, 177-204, 1996.

6. Huynh, T., K. F. Lee, and R. Q. Lee, "Crosspolarisation characteristics of rectangular patch antennas," Electronics Lett., Vol. 24, 463-464, 1998.

7. Chen, Z. N. and M. Y. W. Chia, "Experimental study on radiation performance of probe-fed suspended plate antennas," IEEE Trans. Antennas Propaga., Vol. 51, 1964-1971, 2003.

8. Li, P., H. W. Lai, K. M. Luk, and K. L. Lau, "A wideband patch antenna with cross-polarization suppression," IEEE Antennas Wireless Propaga. Lett., Vol. 3, 211-214, 2004.

9. Chen, Z. N. and M. Y. W. Chia, "Broad-band suspended probefed plate antenna with low cross-polarization levels," IEEE Trans. Antennas Propaga., Vol. 51, 345-346, 2003.

10. Lai, H. W. and K. M. Luk, "Wideband patch antenna fed by printed meandering strip," Microwave and Opt. Technol. Lett., Vol. 50, 188-192, 2008.

11. Petosa, A., A. Ittipiboon, and N. Gagnon, "Suppression of unwanted probe radiation in wideband probe-fed microstrip patches," Electronics Lett., Vol. 35, 355-357, 1999.

12. Chin, C. H. K., Q. Xue, H. Wong, and X. Y. Zhang, "Broadband patch antenna with low cross-polarisation," Electronics Lett., Vol. 43, 137-138, 2007.

13. Hsu, W. H. and K. L. Wong, "A dual capacitively fed broadband patch antenna with reduced cross-polarization radiation," Microwave and Opt. Technol. Lett., Vol. 26, 169-171, 2000.

14. Chen, Z. N. and M. Y. W. Chia, "A novel center-slot-fed suspended plate antenna," IEEE Trans. Antennas Propaga., Vol. 51, 1407-1410, 2003.

15. Targonski, S. D., R. B. Waterhouse, and D. M. Pozar, "Design of wide-band aperture-stacked patch microstrip antennas," IEEE Trans. Antennas Propaga., Vol. 46, 1245-1251, 1998.

16. Chiou, T. W. and K. L. Wong, "Broad-band dual-polarized single microstrip patch antenna with high isolation and low cross polarization," IEEE Trans. Antennas Propaga., Vol. 50, 399-401, 2002.

17. Shin, H. S. and N. Kim, "Wideband and high-gain one-patch microstrip antenna coupled with H-shaped aperture," Electronics Lett., Vol. 38, 1072-1073, 2002.

18. Pozar, D. M. and S. D. Targonski, "Improved coupling for aperture coupled microstrip antennas," Electronics Lett., Vol. 27, 1129-1131, 1991.

© Copyright 2010 EMW Publishing. All Rights Reserved