Vol. 7
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-02-16
Radio-Over -Fiber Transport Systems Based on DFB Ld with Main and -1 Side Modes Injection-Locked Technique
By
Progress In Electromagnetics Research Letters, Vol. 7, 25-33, 2009
Abstract
Full-duplex radio-over-fiber (ROF) transport systems based on distributed feedback laser diode (DFB LD) with main and -1 side modes injection-locked technique is proposed and demonstrated. Improved performances of bit error rate (BER) over a-40 km single-mode fiber (SMF) transmission for down-link, and over an-80 km SMF transmission for up-link were achieved. The characteristic of our proposed systems is the use of one DFB LD with main and -1 side modes injection-locked technique, it reveals a prominent alternative with better performances.
Citation
Hai-Han Lu, Chung-Yi Li, Chia-Hsien Lee, Y.-C. Hsiao, and Hwan-Wen Chen, "Radio-Over -Fiber Transport Systems Based on DFB Ld with Main and -1 Side Modes Injection-Locked Technique," Progress In Electromagnetics Research Letters, Vol. 7, 25-33, 2009.
doi:10.2528/PIERL09011604
References

1. Serdyuk, V. M., "Dielectric study of bound water in grain at radio and microwave frequencies," Progress In Electromagnetics Research, Vol. 84, 379-406, 2008.
doi:10.2528/PIER08081103

2. Oraizi, H. and S. Hosseinzadeh, "A novel marching algorithm for radio wave propagation modeling over rough surfaces," Progress In Electromagnetics Research, Vol. 57, 85-100, 2006.
doi:10.2528/PIER05051001

3. Lin, C. T., J. Chen, P. C. Peng, C. F. Peng, W. R. Peng, B. S. Chiou, and S. Chi, "Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems," IEEE Photon. Technol. Lett., Vol. 19, 610-612, 2007.
doi:10.1109/LPT.2007.894326

4. Prat, J., M. C. Santos, and M. Omella, "Square root module to combat dispersion-induced nonlinear distortion in radio-over-fiber systems," IEEE Photon. Technol. Lett., Vol. 18, 1928-1930, 2006.
doi:10.1109/LPT.2006.881662

5. Lu, H. H., A. S. Patra, W. J. Ho, P. C. Lai, and M. H. Shiu, "A full-duplex radio-over-fiber transport system based on FP laser diode with OBPF and optical circulator with fiber Bragg grating," IEEE Photon. Technol. Lett., Vol. 20, 1652-1654, 2007.
doi:10.1109/LPT.2007.905077

6. Meng, X. J., T. Chau, and M. C. Wu, "Experimental demonstration of modulation bandwidth enhancement in distributed feedback lasers with external light injection," Electron. Lett., Vol. 34, 2031-2032, 1998.
doi:10.1049/el:19981434

7. Lee, S. H., J. M. Kang, I. H. Choi, and S. K. Han, "Linearization of DFB laser diode by external light-injected cross-gain modulation for radio-over-fiber link," IEEE Photon. Technol. Lett., Vol. 18, 1545-1547, 2006.
doi:10.1109/LPT.2006.878161

8. Seo, J. H., Y. K. Seo, and W. Y. Choi, "Nonlinear distortion suppression in directly modulated distributed feedback lasers by sidemode optical injection locking," Jpn. J. Appl. Phys., Vol. 41, L136-L138, 2002.
doi:10.1143/JJAP.41.L136

9. Mohrdiek, S., H. Burkhard, and H. Walter, "Chirp reduction of directly modulated semiconductor lasers at 10 Gb/s by strong CW light injection," J. Lightwave Technol., Vol. 12, 418-424, 1994.
doi:10.1109/50.285323

10. Hong, Y. and K. A. Shore, "Locking characteristics of a sidemode injected semiconductor laser," IEEE J. Quantum Electron., Vol. 35, 1713-1717, 1999.
doi:10.1109/3.798096