Vol. 8
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-05-06
Perturbation of EMC Microstrip Patch Antenna for Permittivity and Permeability Measurements
By
Progress In Electromagnetics Research Letters, Vol. 8, 63-72, 2009
Abstract
The complex permittivity and permeability of barium hexaferrite in the 8-12 GHz range was determined by using perturbation of electromagnetically coupled Ag thick film patch antenna due to overlay. In this technique even minor change in the overlay material properties changes the antenna response. The power gain of the EMC patch antenna was enhanced by 50% due to barium hexaferrite overlay. Barium hexaferrite was synthesized by co precipitation method and their fritless thick films were fabricated by screen printing technique. The properties were found to depend on the synthesis conditions such as Fe/Ba molar ratio, pH of the solution.
Citation
Deepti C. Kulkarni, and Vijaya Puri, "Perturbation of EMC Microstrip Patch Antenna for Permittivity and Permeability Measurements," Progress In Electromagnetics Research Letters, Vol. 8, 63-72, 2009.
doi:10.2528/PIERL09021401
References

1. Bernhard, J. T., E. Kiely, and G. Washington, "A smart mechanically actuated two-layer electromagnetically coupled microstrip antenna with variable frequency, bandwidth and antenna gain," IEEE Transactions on Antennas and Propagations, Vol. 49, 597-601, 2001.
doi:10.1109/8.923320

2. Kulkarni, D. C., U. B. Lonkar, and V. Puri, "High frequency permeability and permittivity of NixZn(1−x)Fe2O4 thick film," Journal of Magnetism and Magnetic Materials, Vol. 320, 1844-1848, 2008.
doi:10.1016/j.jmmm.2008.02.110

3. Kulkarni, D. C., S. P. Patil, and V. Puri, "Properties of NixZn(1−x)Fe2O4 thick films at microwave frequencies," Microelectronics Journal, Vol. 39, 248-252, 2008.
doi:10.1016/j.mejo.2007.12.008

4. Yousefi, L., H. Attia, and O. M. Ramahi, "Broadband experimental characterization of artificial magnetic materials based on a microstrip line method," Progress In Electromagnetics Research, Vol. 90, 1-13, 2009.
doi:10.2528/PIER08121904

5. Brown, A. D., J. L. Volakis, L. C. Kempel, and Y. Y. Botros, "Patch antennas on ferromagnetic substrates," IEEE Transactions on Antennas and Propagations, Vol. 47, 26-30, 1999.
doi:10.1109/8.752980

6. Koledintseva, M. Y. and A. A. Kitaitsev, "Analysis of interaction between a crystallographically uniaxial ferrite resonator and a hall-effect transducer," Progress In Electromagnetics Research, Vol. 74, 1-19, 2007.
doi:10.2528/PIER07032703

7. Yang, G. M., X. Xing, A. Daigle, M. Liu, O. Obi, J. W. Wang, K. Naishadham, and N. X. Sun, "Electronically tunable miniaturized antennas on magnetoelectric substrates with enhanced performance," IEEE Transactions on Magnetics, Vol. 44, 3091-3094, 2008.
doi:10.1109/TMAG.2008.2003062

8. Mossalei, H. and K. Sarabandi, "Magneto-dielectrics in electromagnetic: Concept and applications," IEEE Transactions on Antennas and Propagations, Vol. 52, 1558-1567, 2004.
doi:10.1109/TAP.2004.829413

9. How, H. and C. Vittoria, "Microwave impedance control over a ferrite boundary layer," IEEE Transactions on Magnetics, Vol. 41, 1126-1131, 2005.
doi:10.1109/TMAG.2004.843339

10. Harris, V. G., Z. Chen, Y. Chen, S. Yoon, T. Sakal, et al. "Bahexaferrite films for next generation microwave devices (invited)," Journal of Applied Physics, Vol. 99, 08M911-1-08M911-5, 2006.

11. Vasishta, P. and B. R. Vishvakarma, "Some studies on two layer electromagnetically coupled microstrip antenna with dielectric cover," International Journal of Electronics, Vol. 86, 991-997, 1999.
doi:10.1080/002072199132987

12. Wong, K. L., W. S. Chen, and W. L. Huang, "The absorption and coupling of an electromagnetic wave incident on a microstrip circuit with superstrate," IEEE. Transactions on Electromagnetic Compatibility, Vol. 34, 17-22, 1992.
doi:10.1109/15.121662

13. Janasi, S. R., D. Rodrigues, F. J. G. Landgraf, and M. Emura, "Magnetic properties of coprecipitated barium ferrite powders as a function of synthesis conditions," IEEE Transactions on Magnetics, Vol. 36, 3327-3329, 2000.
doi:10.1109/20.908788