PIER Letters
 
Progress In Electromagnetics Research Letters
ISSN: 1937-6480
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 8 > pp. 125-134

UNIAXIAL PML ABSORBING BOUNDARY CONDITION FOR TRUNCATING THE BOUNDARY OF DNG METAMATERIALS

By K. Zheng, W.-Y. Tam, D.-B. Ge, and J.-D. Xu

Full Article PDF (362 KB)

Abstract:
The conventional perfectly matched layer (PML) absorbing boundary condition is shown to be unstable when it is extended to truncate the boundary of the double negative (DNG) medium. It is a consequence of the reverse directions of the Poynting and phase-velocity vectors of plane waves propagating in such material. In this paper, a modified uniaxial PML (UPML), which is stable for the DNG medium, is derived. The auxiliary differential equation technique is introduced to derive the discrete field-update equations of DNG-UPML. Numerical results demonstrate the effectiveness and stability of the new UPML for the DNG medium.

Citation:
K. Zheng, W.-Y. Tam, D.-B. Ge, and J.-D. Xu, "Uniaxial PML Absorbing Boundary Condition for Truncating the Boundary of DNG Metamaterials," Progress In Electromagnetics Research Letters, Vol. 8, 125-134, 2009.
doi:10.2528/PIERL09030901

References:
1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Shelby, R. A., D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Microwave transmission though a two-dimensional, isotropic, left-handed metamaterial," Appl. Phys. Lett., Vol. 78, 489-491, 2001.
doi:10.1063/1.1343489

3. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847

4. Smith, D. R. and N. Kroll, "Negative refractive index in left-handed materials," Phys. Rev. Lett., Vol. 85, 2933-2936, 2000.
doi:10.1103/PhysRevLett.85.2933

5. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letter, Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

6. Wittwer, D. C. and R. W. Ziolkowski, "Two time-derivative Lorentz material (2TDLM) formulation of a Maxwellian absorbing layer matched to a lossy media," IEEE Trans. Antennas Propag., Vol. 48, No. 2, 192-199, 2000.
doi:10.1109/8.833068

7. Wittwer, D. C. and R.W. Ziolkowski, "Maxwellian material based absorbing boundary conditions fro lossy media in 3D," IEEE Trans. Antennas Propag., Vol. 48, 200-213, 2000.
doi:10.1109/8.833069

8. Berenger, J. P., "A perfectly matched layer for the absorbing EM waves," J. Computat. Phys., Vol. 114, 185-200, 1994.
doi:10.1006/jcph.1994.1159

9. Dong, X. T., X. S. Rao, Y. B. Gan, B. Guo, and W. Y. Yin, "Perfectly matched layer-absorbing boundary condition for left-handed materials," IEEE Microwave Wireless Compon. Lett., Vol. 14, 301-303, 2004.
doi:10.1109/LMWC.2004.827104

10. Cummer, S. A., "Perfectly matched layer behavior in negative refractive index materials," IEEE Antennas Wireless Propagat. Lett., Vol. 3, 172-175, 2004.
doi:10.1109/LAWP.2004.833710

11. Shi, Y., Y. Li, and C. H. Liang, "Perfectly matched layer absorbing boundary condition for truncating the boundary of the left-handed medium," Microwave Opt. Technol. Lett., Vol. 48, No. 1, 57-62, 2006.
doi:10.1002/mop.21260

12. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House, Norwood, MA, 2005.

13. Ziolkowski, R. W. and A. D. Kipple, "Causality and double-negative metamaterials," Physical Review E, Vol. 68, 026615, 2003.
doi:10.1103/PhysRevE.68.026615

14. Gedney, S. D., "An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices," IEEE Trans. Antennas Propagat., Vol. 44, 1630-1639, 1996.
doi:10.1109/8.546249


© Copyright 2010 EMW Publishing. All Rights Reserved