PIER Letters
 
Progress In Electromagnetics Research Letters
ISSN: 1937-6480
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 10 > pp. 115-124

2-DAL SIMULATION OF EM FIELDS RADIATED BY ROTATING CYLINDER CARRYING SURFACE CURRENTS USING PASSING CENTER SWING BACK GRIDS TECHNIQUE

By M. Ho

Full Article PDF (376 KB)

Abstract:
The passing center swing back grids (PCSBG) technique, in conjunction with the method of characteristics (MOC), was proposed to model electromagnetic problems featured with rotating objects. The drive of this proposal lays mainly on the fact that MOC defines all field components in the center of grid cell. Its practicability was validated by exhibiting the radiated EM fields from a rotating cylinder which carries surface currents with Gaussian profile and flowing in the axial direction. To clearly demonstrate that the cylinder is rotating and radiating EM fields simultaneously, the following arrangements were made. The cylinder may be equally sliced into an even number of segments that are with and without currents alternatively since a rotating circular cylinder yields no relativistic effects. The computational results showed that the radiated electromagnetic fields bear vortex structures as the cause of rotating cylinder, which serves as the evidences that PCSBG works properly.

Citation:
M. Ho, "2-Dal Simulation of EM Fields Radiated by Rotating Cylinder Carrying Surface Currents Using Passing Center Swing Back Grids Technique," Progress In Electromagnetics Research Letters, Vol. 10, 115-124, 2009.
doi:10.2528/PIERL09070508

References:
1. Lee, J.-H. and J. Laskar, "Comparative study of feeding techniques for three-dimensional cavity resonators at 60 GHz," IEEE Transactions on Advanced Packing, Vol. 30, No. 1, 2007.

2. Ruiz-Cruz, J. A., J. R. Montejo-Garai, J. M. Rebollar, and S. Sobrino, "Compact full Ku-band triplexer with improved E-plane power divider," Progress In Electromagnetics Research, Vol. 86, 39-51, 2008.
doi:10.2528/PIER08082803

3. Wang, R., L.-S. Wu, and X.-L. Zhou, "Compact folded substrate integrated waveguide cavities and bandpass filter," Progress In Electromagnetics Research, Vol. 84, 135-147, 2008.
doi:10.2528/PIER08071501

4. Ismail, A. and M. S. Razalli, "X-band and trisection substrate in-tegrated waveguide quasi-elliptic filter," Progress In Electromagnetics Research, Vol. 85, 133-145, 2008.
doi:10.2528/PIER08081802

5. Han, S., X.-L.Wang, Y. Fan, Z. Yang, and Z. He, "The generalized chebyshev substrate integrated waveguide diplexer," Progress In Electromagnetics Research, Vol. 73, 29-38, 2007.
doi:10.2528/PIER07032002

6. Potelon, B., J. C. Bohorquez, J. F. Favennec, C. Quendo, E. Rius, and C. Person, "Design of Ku-band filter based on substrate-integrated circular cavities (SICCs)," IEEE MTT-S International Microwave Symposium Digest, 1237-1240, 2006.
doi:10.1109/MWSYM.2006.249434

7. Tang, H. J., W, Hong, J.-X. Chen, G. Q. Luo, and K. Wu, "Development of millimeter-wave planar diplexers based on complementary characters of dual-mode substrate integrated waveguide filters with circular and elliptic cavities," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 4, 776-782, 2007.
doi:10.1109/TMTT.2007.893655

8. Ma, W., K. Wu, W. Hong, and Y.-J. Cheng, "Investigations on half-mode substrate integrated waveguide for high-speed interconnect application," IEEE MTT-S International Microwave Symposium Digest, 120-123, 2008.

9. Liu, B., W. Hong, Y.-Q. Wang, Q.-H. Lai, and K. Wu, "Half mode substrate integrated waveguide (HMSIW) 3-dB coupler," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 1, 22-24, 2007.
doi:10.1109/LMWC.2006.887244

10. Pozar, D. M., "Microwave Engineering," Wiley, 1998.

11. Collin, R. E., Foundations for Microwave Engineering, McGraw-Hill, New York, 1992..


© Copyright 2010 EMW Publishing. All Rights Reserved