Vol. 17

Latest Volume
All Volumes
All Issues
2010-09-23

A Wide-Band, Polarization-Insensitive and Wide-Angle Terahertz Metamaterial Absorber

By Chao Gu, Shaobo Qu, Zhibin Pei, Hang Zhou, Jiafu Wang, Bao-Qin Lin, Zhuo Xu, Peng Bai, and Wei-Dong Peng
Progress In Electromagnetics Research Letters, Vol. 17, 171-179, 2010
doi:10.2528/PIERL10070105

Abstract

In this paper, a wide-band, polarization-insensitive, wide-angle terahertz metamaterial absorber is presented. Simulated results show that the absorber can achieve polarization-insensitive, wide-angle absorptions in a wide band from 4.15 to 4.85 THz. The retrieved impedance shows that the impedance of the absorber could be tuned, in the absorption band, to match approximatively that of free space on one side and to mismatch on the other side, rendering both the reflectance and transmission minimal and thus the corresponding absorbance maximal. The simulated absorbances under three different loss conditions suggest that high absorbance is mainly due to the metallic absorption (Ohmic loss). The dielectric loss of the substrate is minor compared with the metallic absorption. The distribution of the surface current density indicates that the electric and magnetic responses are mainly caused by the front structure. This wide-band terahertz metamaterial absorber has potential applications in many functional devices such as microbolometers, thermal detectors, and solar cells.

Citation


Chao Gu, Shaobo Qu, Zhibin Pei, Hang Zhou, Jiafu Wang, Bao-Qin Lin, Zhuo Xu, Peng Bai, and Wei-Dong Peng, "A Wide-Band, Polarization-Insensitive and Wide-Angle Terahertz Metamaterial Absorber," Progress In Electromagnetics Research Letters, Vol. 17, 171-179, 2010.
doi:10.2528/PIERL10070105
http://www.jpier.org/PIERL/pier.php?paper=10070105

References


    1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509, 1968.
    doi:10.1070/PU1968v010n04ABEH003699

    2. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.
    doi:10.1126/science.1058847

    3. Smith, D. R., D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett., Vol. 82, No. 10, 1506-1508, 2003.
    doi:10.1063/1.1554779

    4. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
    doi:10.1126/science.1133628

    5. Enoch, S., G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, "A metamaterial for directive emission," Phys. Rev. Lett., Vol. 89, No. 21, 213902, 2002.
    doi:10.1103/PhysRevLett.89.213902

    6. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
    doi:10.1103/PhysRevLett.100.207402

    7. Tao, H., N. I. Landy, C. M. Bingham, X. Zhan, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Opt. Express, Vol. 16, No. 10, 7181-7188, 2008.
    doi:10.1364/OE.16.007181

    8. Landy, N. I., C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, "Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging," Phys. Rev. B, Vol. 79, No. 12, 125104, 2009.
    doi:10.1103/PhysRevB.79.125104

    9. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
    doi:10.2528/PIER10011110

    10. Tao, H., C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, "Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization," Phys. Rev. B, Vol. 78, 241103 R, 2008.

    11. Avitzour, Y., Y. A. Urzhumov, and G. Shvets, "Wide-angle infrared absorber based on a negative-index plasmonic metamaterial," Phys. Rev. B, Vol. 79, No. 4, 045131, 2009.
    doi:10.1103/PhysRevB.79.045131

    12. Lagarkov, A. N., V. N. Kisel, and V. N. Semenenko, "Wide-angle absorption by the use of a metamaterial plate," Progress In Electromagnetics Research Letters, Vol. 1, 35-44, 2008.
    doi:10.2528/PIERL07111809

    13. Wen, Q. Y., H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, "Dual band terahertz metamaterial absorber: Design, fabrication, and characterization," Appl. Phys. Lett., Vol. 95, No. 24, 241111, 2009.
    doi:10.1063/1.3276072

    14. Tao, H., C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, "A dual band terahertz metamaterial absorber," J. Phys. D: Appl. Phys., Vol. 43, 225102, 2010.
    doi:10.1088/0022-3727/43/22/225102

    15. Mauskopf, P. D., J. J. Bock, H. Del Castillo, W. L. Holzapfel, and A. E. Lange, "Composite infrared bolometers with Si3N4 micromesh absorbers," Appl. Opt., Vol. 36, No. 4, 765-771, 1997.
    doi:10.1364/AO.36.000765

    16. Parsons, A. D. and D. J. Pedder, "Thin-film infrared absorber structures for advanced thermal detectors," J. Vac. Sci. Technol. A, Vol. 6, No. 3, 1686-1689, 1988.
    doi:10.1116/1.575308

    17. Rand, B. P., P. Peumans, and S. R. Forrest, "Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters," J. Appl. Phys., Vol. 96, No. 12, 7519-7526, 2004.
    doi:10.1063/1.1812589

    18. Pillai, S., K. R. Catchpole, T. Trupke, and M. A. Green, "Surface plasmon enhanced silicon solar cells," J. Appl. Phys., Vol. 101, No. 9, 093105, 2007.
    doi:10.1063/1.2734885

    19. Zhou, J. F., L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, "Negative index materials using simple short wire pairs," Phys. Rev. B, Vol. 73, No. 4, 041101, 2006.
    doi:10.1103/PhysRevB.73.041101

    20. Chen, X. D., T. M. Grzegorczyk, B. I.Wu, J. P. Jr, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, No. 1, 016608, 2004.
    doi:10.1103/PhysRevE.70.016608

    21. Reynolds, J. E., B. A. Munk, J. B. Pryor, and R. J. Marhefka, "Ohmic loss in frequency selective surface," J. Appl. Phys., Vol. 93, No. 9, 5346-5358, 2003.
    doi:10.1063/1.1565189