PIER Letters
 
Progress In Electromagnetics Research Letters
ISSN: 1937-6480
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 17 > pp. 163-170

MINIATURE ELECTROMAGNETIC BAND-GAP STRUCTURE USING SPIRAL GROUND PLANE

By H.-H. Xie, Y.-C. Jiao, K. Song, and B. Yang

Full Article PDF (892 KB)

Abstract:
An important application of electromagnetic band-gap (EBG) structures is reducing the mutual coupling and eliminating the scan blindness for array antennas. However, some array antennas have small element spacing,and traditional mushroom-like EBG materials are too large. Under this condition, miniature EBG structures are desired for these array antennas. In this paper, a novel method using spiral ground plane is proposed to reduce EBG structure sizes. A low frequency band-gap can be obtained by adjusting the width and length of the spiral arms. An experimental prototype is fabricated to validate the analysis. The measurement results show a good agreement with the simulation data. Compared with traditional mushroom-like EBG structures, the proposed EBG achieves more than 77% size diminution.

Citation:
H.-H. Xie, Y.-C. Jiao, K. Song, and B. Yang, "Miniature Electromagnetic Band-Gap Structure Using Spiral Ground Plane," Progress In Electromagnetics Research Letters, Vol. 17, 163-170, 2010.
doi:10.2528/PIERL10081203

References:
1. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Trans. Antennas and Propagat., Vol. 51, No. 10, 2936-2946, Oct. 2003.
doi:10.1109/TAP.2003.817983

2. Fu, Y. Q., Q. R. Zheng, Q. Gao, and G. H. Zhang, "Mutual coupling reduction between large antenna arrays using electromagnetic bandgap (EBG) structures," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 6, 819-825, 2006.
doi:10.1163/156939306776143415

3. Fu, Y. and N. Yuan, "Elimination of scan blindness in phased array of microstrip patches using electromagnetic bandgap materials," IEEE Antennas and Wireless Propagat. Lett., Vol. 3, 63-65, 2004.

4. Apostolopoulos, G., A. Feresidis, and J. C. Vardaxoglou, "Miniaturised EBG structures based on complementary geometries," IEEE APS Int Symp. Dig., 2253-2256.

5. Zheng, Q. R., Y. Q. Fu, and N. C. Yuan, "A novel compact spiral electromagnetic band-gap (EBG) structure," IEEE Trans. Antennas and Propagat., Vol. 56, No. 6, 1656-1660, Jun. 2008.
doi:10.1109/TAP.2008.923305

6. Kim, Y., F. Yang, and A. Z. Elsherbeni, "Compact artificial magnetic conductor designs using planar square spiral geometries," Progress In Electromagnetics Research, Vol. 77, 43-54, 2007.
doi:10.2528/PIER07072302

7. Lin, B. Q., Q. R. Zheng, and N. C. Yuan, "A novel spiral high impedance surface structure for size reduction," Microwave and Optical Technology Lett., Vol. 49, No. 9, 2186-2189, Sep. 2007.
doi:10.1002/mop.22691

8. McVay, J., N. Engheta, and A. Hoorfar, "High impedance metamaterial surfaces using Hilbert-curve inclusions," IEEE Microw. Wireless Components Lett., Vol. 14, No. 3, 130-132, Mar. 2004.
doi:10.1109/LMWC.2003.822571

9. Yang, F. and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, 2009.

10. Yang, F., J. Chen, Q. Rui, and A. Elsherbeni, "A simple and efficient FDTD/PBC algorithm for scattering analysis of periodic structures," Radio Science., Vol. 42, No. 4, RS4004, Jul. 2007.
doi:10.1029/2006RS003526

11. Sievenpiper, D., High-impedance electromagnetic band-gap surface, Ph.D. Dissertation, University of California, Los Angeles, 1999.


© Copyright 2010 EMW Publishing. All Rights Reserved