Vol. 18
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-10-27
New Dual-Band Bandpass Filter with Compact SIR Structure
By
Progress In Electromagnetics Research Letters, Vol. 18, 125-134, 2010
Abstract
New dual-band bandpass filters with compact coupling and sizes reduction are proposed by using split ring stepped-impedance resonators and two paths coupling. In the new design, split ring SIR and defected ground structure are applied not only to reduce filter size but also to improve the filter performances. The presented filters have advantages of compact and novel structures, miniaturization and dual-band with nicer performances such as high selectivity, low passband insertion losses and so on, and these performances are demonstrated by measurement. The new design may be quite useful in wireless communication systems.
Citation
Jian-Kang Xiao, and Hui-Fen Huang, "New Dual-Band Bandpass Filter with Compact SIR Structure," Progress In Electromagnetics Research Letters, Vol. 18, 125-134, 2010.
doi:10.2528/PIERL10082202
References

1. Yang, R.-Y., H. Kuan, C.-Y. Hung, and C.-S. Ye, "Design of dual-band bandpass filters using a dual feeding structure and embedded uniform impedance resonators," Progress In Electromagnetics Research, Vol. 105, 93-102, 2010.
doi:10.2528/PIER10042504

2. Zhao, L.-P., X.-W. Dai, Z.-X. Chen, and C.-H. Liang, "Novel design of dual-mode dual-band bandpass filter with triangular resonators," Progress In Electromagnetics Research, Vol. 77, 417-424, 2007.
doi:10.2528/PIER07090501

3. Wang, Y.-X., B.-Z. Wang, and J. P. Wang, "A compact square loop dual-mode bandpass filter with wide stop-band," Progress In Electromagnetics Research, Vol. 77, 67-73, 2007.
doi:10.2528/PIER07072707

4. Wu, H.-W., S.-K. Liu, M.-H. Weng, and C.-H. Hung, "Compact microstrip bandpass filter with multispurious suppression," Progress In Electromagnetics Research, Vol. 107, 21-30, 2010.
doi:10.2528/PIER10061601

5. Vegesna, S. and M. A. Saed, "Novel compact dual-band bandpass microstrip filter," Progress In Electromagnetics Research B, Vol. 20, 245-262, 2010.
doi:10.2528/PIERB10012210

6. Kuo, J. T., T. H. Yeh, and C. C. Yeh, "Design of microstrip bandpass filter with a dual-passband response," IEEE Trans. Microwave Theory Tech., Vol. 53, 1331-1337, 2005.
doi:10.1109/TMTT.2005.845765

7. Sagawa, M., M. Makimoto, and S. Yamashita, "Geometrical structures and fundamental characteristics of microstrip stepped-impedance resonators," IEEE Trans. Microwave Theory and Techniques, Vol. 45, 1078-1085, 1997.
doi:10.1109/22.598444

8. Kuo, J. T. and E. Shih, "Microstrip stepped impedance resonator bandpass filter with an extended optimal rejection bandwidth," IEEE Trans. Microwave Theory and Techniques, Vol. 51, 1554-1559, 2003.
doi:10.1109/TMTT.2003.810138

9. Choil, W.-W., K.-W. Tam, and R. P. Martins, "A novel microstrip transversal bandpass filter with simultaneous size reduction and spurious responses suppression," 2005 Asia-Pacific Microwave Conference Proceedings, Vol. 1, 508-511, 2005.

10. Dal, A., J. S. Park, C. S. Kim, et al. "A design of the lowpass filter using the novel microstrip defected ground structure," IEEE Trans. Microwave Theory and Techniques, Vol. 49, No. 1, 86-93, 2001.
doi:10.1109/22.899965

11. Makimoto, M. and S. Yamashita, Microwave Resonators and Filters for Wireless Communication, Springer-Verlag, Berlin, Heidelberg, 2001.

12. Sagawa, M., K. Takahashi, and M. Makimoto, "Miniaturized hairpin resonator filters and their application to receiver front-end MIC's," IEEE Trans. Microwave Theory and Techniques, Vol. 37, 1991-1996, 1989.
doi:10.1109/22.44113