PIER Letters
Progress In Electromagnetics Research Letters
ISSN: 1937-6480
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 19 > pp. 83-92


By B. Sun, D. Chen, and S. He

Full Article PDF (288 KB)

We propose a switchable and wavelength spacing tunable multi-wavelength fiber optical parametric oscillator (MW-FOPO) with two cascaded fiber Bragg gratings (FBGs). The MW-FOPO can operate at two multi-wavelength lasing modes with different wavelength spacings, which can be switched by adjusting some polarization controllers (PCs). Stable multi-wavelength lasing at those two different operation modes at room temperature is achieved due to the four wave mixing (FWM) effect and the broadband gain of the fiber optical parametric amplifier (FOPA) based on a highly nonlinear fiber. The wavelength spacing of the proposed MW-FOPO can be tuned by adjusting the wavelength of the pump light or the central wavelength of the FBG at the two multi-wavelength lasing modes.

B. Sun, D. Chen, and S. He, "Fiber Optical Parametric Oscillator with Switchable and Wavelength-Spacing Tunable Multi-Wavelength," Progress In Electromagnetics Research Letters, Vol. 19, 83-92, 2010.

1. Ho, M., K. Uesaka, Y. Akasaka, and L. G. Kazovsky, "200-nm-bandwidth fiber optical amplifier combing parametric and Raman gain," J. Lightwave Technol., Vol. 19, 977-981, 2001.

2. Marhid, M. E., K. K.-Y. Wong, G. Kalogerakis, and L. G. Kazovsky, "Toward pracitical fiber optical parametric amplifiers and oscillators," Optics & Photonics News, 21-25, 2004.

3. Torounidis, T., P. A. Andrekson, and B. Olsson, "Fiber-optical parametric amplifier with 70-dB gain," IEEE Photon. Technol. Lett., Vol. 18, 1194-1196, 2006.

4. Wong, K. K.-Y., K. Shimizu, K. Uesaka, G, Kalogerakis, M. E. Marhic, and L. G. Kazovsky, "Continuous-wave fiber optical parametric amplifier with 60-dB gain using a novel two segment design," IEEE Photon. Technol. Lett., Vol. 15, 1707-1709, 2003.

5. Gao, M., C. Jiang, W. Hu, and J.Wang, "Optimized design of two-pump fiber optical parametric amplifier with two-section nonlinear fibers using genetic algorithm," Opt. Express, Vol. 12, 5603-5613, 2004.

6. Dahan, D. and G. Eisenstein, "Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: A route to all optical buffering," Opt. Express, Vol. 13, 6234-6249, 2005.

7. Wong, K. K.-Y., G. W. Lu, and L. K. Chen, "Polarization-interleaved WDM signals in a fiber optical parametric amplifier with orthogonal pumps," Opt. Express, Vol. 15, 56-61, 2007.

8. Singh, S. P., R. Gangwar, and N. Singh, "Nonlinear scattering effects in optical fibers," Progress In Electromagnetics Research, Vol. 74, 379-405, 2007.

9. Andalib, A., A. Rostami, and N. Grangpayeh, "Analytical investigation and evaluation of pulse broadening factor propagating through nonlinear optical fibers (traditional and optimum dispersion compensated fibers)," Progress In Electromagnetics Research, Vol. 79, 119-136, 2008.

10. Marhic, M. E., K. K.-Y. Wong, L. G. Kazovsky, and T. E. Tsai, "Continuous-wave fiber optical parametric oscillator," Opt. Lett., Vol. 27, 1439-1441, 2002.

11. Lasri, J., P. Devgan, R. Tang, J. E. Sharping, and P. Kumar, "A microstructure-fiber-based 10-GHz synchronized tunable optical parametric oscillator in the 1550-nm regime," IEEE Photon, Technol. Lett., Vol. 15, 1058-1060, 2003.

12. De Matos, C. J. S., J. R. Taylor, and K. P. Hansen, "Continuous-wave, totally fiber integrated optical parametric oscillator using holey fiber," Opt. Lett., Vol. 29, 983-985, 2004.

13. Wong, G. K. L., S. G. Murdoch, R. Leonhardt, J. D. Harvey, and V. Marie, "High-conversion-efficiency widely-tunable all-fiber optical parametric oscillator," Opt. Express, Vol. 15, 2947-2952, 2007.

14. Yang, S., Y. Zhou, J. Li, and K. K.-Y. Wong, "Actively mode-locked fiber optical parametric oscillator," IEEE J. Sel. Topics Quantum Electron., Vol. 15, 393-398, 2009.

15. Staring, A. A. M., L. H. Spiekman, J. J. M. Binsma, E. J. Jansen, T. V. Dongen, P. J. A. Thijs, M. K. Smit, and B. H. Verbeek, "A compact nine-channel multiwavelength laser," IEEE Photon. Technol. Lett., Vol. 8, 1139-1141, 1996.

16. Talaverano, L., S. Abad, S. Jarabo, and M. Lpez-Amo, "Multiwavelength fiber laser sources with Bragg-grating sensor multiplexing capability," J. Lightwave Technol., Vol. 19, 553-558, 2001.

17. Lu, Z. G., F. G. Sun, G. Z. Xiao, and C. P. Grover, "A tunable multiwavelength fiber ring laser for measuring polarization-mode dispersion in optical fibers," IEEE Photon. Technol. Lett., Vol. 16, 1280-1282, 2004.

18. Shen, G. F., X. M. Zhang, H. Chi, and X. F. Jin, "Microwave/millimeter-wave generation using multi-wavelength photonic crystal fiber Brillouin laser," Progress In Electromagnetics Research, Vol. 80, 307-320, 2008.

19. Hart, D. L., A. F. Judy, R. Roy, and J. W. Beletic, "Dynamical evolution of multiple four-wave-maxing processes in an optical fiber," Phys. Rev. E., Vol. 57, 4757-4774, 1998.

20. Thompson, J. R. and R. Roy, "Nonlinear dynamics of multiple four-wave-maxing processes in a single-mode fiber," Phys. Rev. A, Vol. 43, 4987-4996, 1991.

21. Liu, X.-M., "Theory and experiments for multiple four-wave-mixing processes with multifrequency pumps in optical fibers," Phys. Rev. A, Vol. 77, 043818, 2008.

© Copyright 2010 EMW Publishing. All Rights Reserved