Vol. 20
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-02-12
Analysis on Shielding Performance of Metallic Rectangular Cascaded Enclosure with Apertures
By
Progress In Electromagnetics Research Letters, Vol. 20, 185-195, 2011
Abstract
A full-wave approach is proposed to evaluate the shielding performance of metallic rectangular double-stage cascaded enclosures with apertures. The analysis has been carried out by means of the mode-matching technique and the mixed potential integral equation solved with the Method of Moments. The effects of the dimension of enclosures, the orientation of apertures, the polarization direction of the incident wave, the aperture thickness and the high-order modes propagating in enclosures are taken into account. The accuracy of the proposed approach is validated by comparing with other methods and numerical simulation results can derive some conclusions: the shielding performance of cascaded enclosures is better than that of single-stage enclosures, the shielding effectiveness can be improved with increasing the distance between stages in the range, and the shielding performance of the double-stage enclosure with parallel-pattern apertures in horizontal polarization case is better than that in vertical polarization case.
Citation
Gang Wu, Xingang Zhang, Zhi-Qiang Song, and Bo Liu, "Analysis on Shielding Performance of Metallic Rectangular Cascaded Enclosure with Apertures," Progress In Electromagnetics Research Letters, Vol. 20, 185-195, 2011.
doi:10.2528/PIERL11010902
References

1. Celozzi, S., R. Araneo, and G. Lovat, Electromagnetic Shielding, John Wiley & Sons, Inc., New Jersey, 2008.
doi:10.1002/9780470268483

2. Robinson, M. P., T. M. Benson, C. Christopoulos, J. F. Dawson, M. D. Ganley, A. C. Marvin, S. J. Porter, and D. W. P. Thomas, "Analytical formulation for the shielding effectiveness of enclosures with apertures," IEEE Trans. Electromagn. Compat., Vol. 40, No. 3, 240-247, 1998.
doi:10.1109/15.709422

3. Lei, J.-Z., C.-H. Liang, and Y. Zhang, "Study on shielding effectiveness of metallic cavities with apertures by combining parallel FDTD method with windowing technique," Progress In Electromagnetics Research, Vol. 74, 85-112, 2007.
doi:10.2528/PIER07041905

4. Araneo , R. G. Lovat, "Fast MoM analysis of the shielding effectiveness of rectangular enclosures with apertures, metal plates, and conducting objects," IEEE Trans. Electromagn. Compat., Vol. 51, No. 2, 274-283, 2009.
doi:10.1109/TEMC.2008.2010456

5. Dehkhoda, P., A. Tavakoli, and R. Moini, "Fast calculation of the shielding effectiveness for a rectangular enclosure of finite wall thickness and with numerous small apertures," Progress In Electromagnetics Research, Vol. 86, 341-355, 2008.
doi:10.2528/PIER08100803

6. Xue, M. F., W. Y. Yin, Q. F. Liu, and J. F. Mao, "Wideband pulse responses of metallic rectangular multistage cascaded enclosures illuminated by an EMP," IEEE Trans. Electromagn. Compat., Vol. 50, No. 4, 274-283, 2008.

7. Bahadorzadeh Ghandehari, M., M. Naser-Moghaddasi, and A. R. Attari, "Improving of shielding effectiveness of a rectangular metallic enclosure with aperture by using extra wall," Progress In Electromagnetics Research Letters, Vol. 1, 45-50, 2008.
doi:10.2528/PIERL07110706

8. Zhang, B. Q., "Research on mode-matching method in microwave passive component design,", Ph.D. Dissertation, University of Electronic Science and Technology of China, Chengdu, 2004.

9. Wu, G., X. G. Zhang, and B. Liu, "A hybrid method for predicting the shielding effectiveness of rectangular metallic enclosures with thickness apertures," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8-9, 1157-1169, 2010.
doi:10.1163/156939310791585972

10. Harrington, R. F., Time-harmonic Electromagnetic Fields, IEEE Press, New Jersey, 2001.
doi:10.1109/9780470546710