Vol. 23
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-04-14
Compact Dual-Band Bandpass Filter Using Improved Split Ring Resonators Based on Stepped Impedance Resonator
By
Progress In Electromagnetics Research Letters, Vol. 23, 57-63, 2011
Abstract
In this letter, a compact planer dual-band bandpass filter(BPF) using novel split-ring resonators (SRRs) is proposed. Compared with conventional SRRs, the stepped impedance split ring resonator (SIR-SRR) has better performance on miniaturization. To verify good characteristics of the novel structure, a new resonator-embedded cross-coupled filter, constructed by a pair of new resonators, is designed. This new filter has good characteristics of compact size and high selectivity. The improved SRR unit cell has a size of 0.108λg×0.108λg (where λg is the guided wavelength) at central frequency (2.25 GHz) of upper passband. Simulated results show that two central frequencies of the filter locate at 1.90 and 2.25 GHz with 3-dB fractional bandwidths of 1.0% and 7.7%, respectively. The lower passband band is generated by inner resonator with a via hole to gound plane, while the upper passband is created by outer resonator. Moreover, a good out-band performance is shown in this letter. Its stop-bands are extended 0-1.85 GHz at lower band and 2.4-5.8 GHz at upper band with a rejection level of about 20-dB. The measured and simulated results are well complied with each other.
Citation
Liang Zhou, Shaobin Liu, Hai Feng Zhang, Xiang-Kun Kong, and Ya-Nan Guo, "Compact Dual-Band Bandpass Filter Using Improved Split Ring Resonators Based on Stepped Impedance Resonator," Progress In Electromagnetics Research Letters, Vol. 23, 57-63, 2011.
doi:10.2528/PIERL11030402
References

1. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2075-2084, Nov. 1999.
doi:10.1109/22.798002

2. Falcone, F., T. Lopetegi, J. D. Baena, R. Marques, F. Martin, and M. Sorolla, "Effective negative-epsilon stopband microstrip lines based on complementary split ring resonators," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 6, 280-282, Jun. 2004.
doi:10.1109/LMWC.2004.828029

3. Garcia, J., J. Bonache, I. Gil, F. Martin, M. Castillo, and , "Miniaturized microstrip and CPW filters using coupled metamaterial resonators," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 6, 2628-2635, Jun. 2006.
doi:10.1109/TMTT.2006.872934

4. Burokur, S. N., M. Latrach, and S. Toutain, "Analysis and design of waveguides loaded with split-ring resonators," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 10, 1407-1421, 2005.
doi:10.1163/156939305775525864

5. Zheng, Z.-A. and Q.-X. Chu, "Compact CPW-FED UWB antenna with dual band-notched characteristics," Progress In Electromagnetic Research Letters, Vol. 11, 83-91, 2009.
doi:10.2528/PIERL09071809

6. Levy, R., "Filters with single transmission zeros at real or imaginary frequencies," IEEE Trans. Microwave Theory Tech., Vol. 24, 172-181, Apr. 1976.
doi:10.1109/TMTT.1976.1128811

7. Hong, J.-S. and M. J. Lancaster, "Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters," IEEE Trans. Microwave Theory Tech., Vol. 44, 2099-2109, Dec. 1996.
doi:10.1109/22.543968

10. Makimoto, M. and S. Yamashita, "Bandpass filters using parallel coupled stripline stepped impedance resonators," IEEE Trans. Microwave Theory Tech., Vol. 28, 1413-1417, Dec. 1980.
doi:10.1109/TMTT.1980.1130258