Vol. 31
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-04-05
Broad Band-Stop Filter Using Frequency Selective Surfaces in Uniplanar Microwave Transmission Line
By
Progress In Electromagnetics Research Letters, Vol. 31, 45-53, 2012
Abstract
We present a band-stop filter (BSF) by using a periodic structure property of frequency selective surfaces (FSSs) embedded in a microstrip transmission line. The proposed BSF is designed with FSS unit cells modifying the cross-loop slots. The center frequency (fo) of the BSF is 6.6 GHz, and the 3-dB bandwidth varies by the number of cascading unit cells. The BSF is interpreted with an equivalent circuit model and a dispersion diagram, and exhibits uniplanar geometry, low return loss, simple fabrication, smaller size, and wide bandwidth.
Citation
Jae-Young Kim, Jung Han Choi, and Chang Won Jung, "Broad Band-Stop Filter Using Frequency Selective Surfaces in Uniplanar Microwave Transmission Line," Progress In Electromagnetics Research Letters, Vol. 31, 45-53, 2012.
doi:10.2528/PIERL12022705
References

1. Pozar, D. M., Microwave Engineering, 3rd Ed., John Wiley, 2005.

2. Radisic, V., Y. Qian, and T. Itoh, "Novel 2-D photonic bandgap structure for microstrip lines," IEEE Microwave Guided Wave Lett., Vol. 8, No. 2, 69-71, 1998.
doi:10.1109/75.658644

3. Li, Y., H. Jiang, L. He, H. Li, Y. Zhang, and H. Chen, "Multichanneled filter based on a branchy defect in microstrip photonic crystal," Appl. Phys. Lett., Vol. 88, 081106, 2006.
doi:10.1063/1.2176851

4. Ahn, D., J. S. Park, C. S. Kim, J. Kim, Y. Qian, and T. Itoh, "A design of the low-pass filter using the novel microstrip defected ground structure," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 1, 86-93, 2001.
doi:10.1109/22.899965

5. Falcone, F., T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Phys. Rev. Lett., Vol. 93, 197401, 2004.
doi:10.1103/PhysRevLett.93.197401

6. Sor, J., Y. Qian, and T. Itoh, "A novel low-loss slow-wave CPW periodic structure for filter applications," 2001 IEEE MTT-S Int. Microwave Symp. Dig., Vol. 1, 307-310, 2001.

7. Kazerooni, M., G. R. Rad, and A. Cheldavi, "Behavior study of simultaneously defected microstrip and ground structure (DMGS) in planar circuits," PIERS Proceedings, 895-900, Beijing, China, Mar. 23--27, 2009.

8. Ibraheem, I. A. and M. Koch, "Coplanar waveguide metamaterials: The role of bandwidth modifying slots," Appl. Phys. Lett., Vol. 91, 113517, 2007.
doi:10.1063/1.2784965

9. Kee, C. S., M. Y. Jang, I. M. Park, H. Lim, J. E. Kim, H. Y. Park, and J. I. Lee, "Photonic band gap formation by microstrip ring: A way to reduce the size of microstrip photonic band gap structures," Appl. Phys. Lett., Vol. 80, 1520, 2002.
doi:10.1063/1.1458069

10. Kee, C. S., M. Y. Jang, S. I. Kim, I. M. Park, and H. Lim, "Tuning and widening of stop bands of microstrip photonic band gap ring structures," Appl. Phys. Lett., Vol. 86, 181109, 2005.
doi:10.1063/1.1906315

11. Chen, D., S. Wang, L. Li, Z. Liu, and X. Z. Zhao, "Microstrip filter with H-shaped fractal," Appl. Phys. Lett., Vol. 88, 253507, 2006.
doi:10.1063/1.2214178

12. Munk, B. A., Frequency Selective Surfaces: Theory and Design, 1st Ed., John Wiley, 2000.
doi:10.1002/0471723770

13. Meng, X. and A. Chen, "Influence of cross-loop slots FSS structure parameters on frequency response," 2009 IEEE Int. Symp., Vol. 1, 939, 2009.

14. Myers, H. P., Introductory Solid State Physics, 2nd Ed., CRC Press, 1997.

15. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley, 2005.
doi:10.1002/0471754323