Vol. 33
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-06-22
A Distributed Variable Delay Line for Wideband Beam-Formers
By
Progress In Electromagnetics Research Letters, Vol. 33, 37-46, 2012
Abstract
A fully integrated CMOS wideband distributed variable delay line for time array beam-formers is presented. The delay line works over a full differential mode, and the delay cell function is based on differential amplifiers with active inductive peaking loads. A delay resolution of 15 ps is obtained with a maximum delay capability of 150 ps . The designed active delay line provides 3 scanning angles with 8.6o degrees of spatial resolution. This delay line is applicable for a 4 channel beam-former with an operational bandwidth of 500 MHz centered at 5 GHz. Our active delay line consumes up to 352 mW of power from 2.5 V supply. The circuit is simulated in standard 0.25 μm BiCMOS process and occupies 252 μm × 123 μm of silicon area.
Citation
Saliba Dabbagh, Loay D. Khalaf, and Mohammed Hawa, "A Distributed Variable Delay Line for Wideband Beam-Formers," Progress In Electromagnetics Research Letters, Vol. 33, 37-46, 2012.
doi:10.2528/PIERL12040213
References

1. Hashemi, H., H. Krishnaswamy, K. Newton, and J. Roderik, "Silicon-based ultra-wideband beamforming," IEEE Journal of Solid-State Circuits, Vol. 41, No. 8, 1726-1739, Aug. 2006.
doi:10.1109/JSSC.2006.877257

2. Hashemi, H., T.-S. Chu, and J. Roderik, "Integrated true-time-delay-based ultra-wideband array processing," IEEE Communication Magazine, 162-172, Sep. 2008.
doi:10.1109/MCOM.2008.4623722

3. Bahl, I., Lumped Elements for RF and Microwave Circuits, 1st Ed., Artech House, London, 2003.

4. Alioto, M. and G. Palumbo, Model and Design of Bipolar and MOS Current Mode Logic: CML, ECL and SCL Digital Circuits, 1st Ed., Springer, USA, 2005.

5. Kao, M.-S., J.-M.Wu, C.-H. Lin, F.-T. Chen, and S. S. H. Hsu, "A 10-Gb/s CML I/O circuit for backplane interconnection in 0.18-μm CMOS technology," IEEE Transactions on Very Large Scale Integrated (VLSI), Vol. 17, No. 5, 688-696, May 2009.
doi:10.1109/TVLSI.2009.2016726

6. Atrouz, B., A. Alimohad, and B. Aissa, "An effective jammers cancellation by means of a rectangular array antenna and a sequential block LMS algorithm: Case of mobile sources," Progress In Electromagnetics Research C, Vol. 7, 193-207, 2009.
doi:10.2528/PIERC09020501

7. Hajj, M., M. Salah Toubet, Y. Abdallah, R. Chantalat, and B. Jecko, "A novel beam scanning/directivity reconfigurable M-EBG antenna array ," Progress In Electromagnetics Research C, Vol. 29, 55-66, 2012.

8. Kasi, B. and C. K. Chakrabarty, "Ultra-wideband antenna array design for target detection," Progress In Electromagnetics Research C, Vol. 25, 67-79, 2012.
doi:10.2528/PIERC11090607

9. Nayeri, P., F. Yang, and A. Z. Elsherbeni, "Bandwidth improvement of reflectarray antennas using closely spaced elements," Progress In Electromagnetics Research C, Vol. 18, 19-29, 2011.

10. Bhattacharryya, A. K., Phased Array Antennas, John Wiley, NJ, 2006.

11. Alfred, Q. M., K. Bishayee, T. Chakravarty, and S. K. Sanyal, "A schematic for broadband beam formation using time-delay technique ," Progress In Electromagnetics Research M, Vol. 3, 131-139, 2008.
doi:10.2528/PIERM08042802

12. Liang, G., W. B. Gong, H. J. Liu, and J. P. Yu, "Development of 61-channel digital beam-forming (DBF) transmitter array for mobile satellite communication ," Progress In Electromagnetics Research, Vol. 97, 177-195, 2009.
doi:10.2528/PIER09082303