Vol. 32
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-06-04
Thermal Expansion of Photonic Band Gap for One Dimensional Photonic Crystal
By
Progress In Electromagnetics Research Letters, Vol. 32, 81-90, 2012
Abstract
The effect of temperature on the photonic band gap has been investigated. One dimensional photonic crystal in the form of Si/air multilayer system has been studied in this communication. The refractive index of silicon layers is taken as a function of temperature and wavelength both. Therefore, this study may be considered to be physically more realistic. It may be useful for computing the optical properties for wider range of wavelength as well as temperature. We can use the proposed structure as temperature sensing device, narrow band optical filter and in many optical systems.
Citation
Bhuvneshwer Suthar, Vipin Kumar, Arun Kumar, Khundrakpam Saratchandra Singh, and Anami Bhargava, "Thermal Expansion of Photonic Band Gap for One Dimensional Photonic Crystal," Progress In Electromagnetics Research Letters, Vol. 32, 81-90, 2012.
doi:10.2528/PIERL12041906
References

1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059, 1987.
doi:10.1103/PhysRevLett.58.2059

2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, 2486, 1987.
doi:10.1103/PhysRevLett.58.2486

3. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals, Princeton University Press, Princeton, 1995.

4. Soukoulis, C. M., Photonic Band Gap Materials, NATO ASI, Kluwer Academic Publishers, Dordrecht, 1986.

5. Suthar, B. and A. Bhargava, "Tunable multi-channel filtering using 1-D photonic quantum well structures," Progress In Electromagnetics Research Letters, Vol. 27, 43-51, 2011.
doi:10.2528/PIERL11072208

6. Bhargava, A. and B. Suthar, "Optical switching properties of kerrnonlinear chalcogenide photonic crystal," J. of Ovonic Research, Vol. 5, No. 6, 187, 2009.

7. Li, B., J. Zhou, L. Li, X. J. Wang, X. H. Liu, and J. Zi, "Ferroelectric inverse opals with electrically tunable photonic band gap," Appl. Phys. Lett., Vol. 83, 4704, 2003.
doi:10.1063/1.1631737

8. Kumar, V., K. S. Singh, S. K. Singh, and S. P. Ojha, "Broadening of omnidirectional photonic band gap in Si-based one-dimensional photonic crystals," Progress In Electromagnetics Research M, Vol. 14, 101-111, 2010.
doi:10.2528/PIERM10062807

9. Wang, X., K. Kempa, Z. F. Ren, and B. Kimball, "Rapid photon flux switching in two-dimensional photonic crystals," Appl. Phys. Lett., Vol. 84, 1817, 2004.
doi:10.1063/1.1667593

10. Bermann, O. L., Y. E. Lozovik, S. L. Eiderman, and R. D. Coalson, "Superconducting photonic crystals: Numerical calculations of the band structure," Phys. Rev. B, Vol. 74, 092505, 2006.
doi:10.1103/PhysRevB.74.092505

11. Takeda, H. and K. Yoshino, "Tunable photonic band schemes in two-dimensional photonic crystals composed of copper oxide high-temperature superconductors," Phys. Rev. B , Vol. 67, 245109, 2005.

12. Lin, , W.-H., C.-J. Wu, T.-J. Yang, and S.-J. Chang, "Terahertz multichanneled filter in a superconducting photonic crystal," Opt. Express, Vol. 18, 27155, 2010.
doi:10.1364/OE.18.027155

13. Halevi, P. and J. A. Reyes-Avendano, "Electrically tuned phase transition and band structure in a liquid-crystal-infilled photonic crystal," Phys. Rev. E, Vol. 73, 040701 (R), 2006.

14. Li, H. H., "Refractive index of silicon and germanium and its wavelength and temperature derivatives," J. Phys. Chem. Ref. Data, Vol. 9, 561, 1980.
doi:10.1063/1.555624

15. Banerjee, A., "Enhanced temperature sensing by using one-dimensional ternary photonic band gap structures," Progress In Electromagnetics Research Letters, Vol. 11, 129-137, 2009.
doi:10.2528/PIERL09080101

16. Chang, Y.-H., Y.-Y. Jhu, and C.-J. Wu, "Temperature dependence of defect mode in a defective photonic crystal," Opt. Commun., 2011, [Online early access], doi:10.1016/j.optcom.2011.10.053.

17. Born, M. and , E. Wolf, Principles of Optics, Cambridge, London, 1999.

18. Yeh, P., "Optical Waves in Layered Media," John Wiley and Sons, 1988.

19. Sakoda, K., Optical Properties of Photonic Crystals, Springer,Germany, 2001.

20. Ghosh, G., "Handbook of Thermo-optic Coefficients of Optical Materials with Applications," Academic Press, San Diego, CA,USA, 1997.