Vol. 33
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-07-18
Modified Directional Wide Band Printed Monopole Antenna for Use in Radar and Microwave Imaging Applications
By
Progress In Electromagnetics Research Letters, Vol. 33, 119-129, 2012
Abstract
This paper presents a modified design of directional monopole antenna with parabolic-shaped ground plane. To increase the directivity, axis of parabola in the ground plane is rotated 45 degrees (in comparison with the previous antenna) to extend throughout the direction of the substrate's diagonal. Consequently, vertex of the parabola is placed at the optimum point in the corner of the substrate. The aim of this attempt is to design an extended and symmetrical ground plane around the patch, with more clarity, to maximize its capability as a reflector. Directivity is further improved by inserting parabolic-shaped slots at the corners of the ground plane. Simulation and measurements show that the proposed antenna has stable directional radiation pattern and higher gain compared to the previous directional monopole antennas. Impedance bandwidth of the antenna covers the frequency range of 4-9 GHz. Measured HPBW is among the degrees 54-22 between 4 and 9 GHz. Gain and HPBW of the antenna are improved 1.3-3.1 dB and 5-15 degrees, respectively among the bandwidth in comparison with previous antenna. Results confirm the good characteristics of the antenna for use in microwave imaging, where high resolution is required.
Citation
Javad Jangi Golezani, Mehmet Abbak, and Ibrahim Akduman, "Modified Directional Wide Band Printed Monopole Antenna for Use in Radar and Microwave Imaging Applications," Progress In Electromagnetics Research Letters, Vol. 33, 119-129, 2012.
doi:10.2528/PIERL12052803
References

1. Stutzman, W. L. and G. A. Thiele, Antenna Theory and Design, 2nd Ed., John Wiley & Sons, 1998.

2. Mokhtaari, M. and J. Bornemann, "Directional ultra-wideband antennas in planar technologies," Proceedings of the 38th European Microwave Conference, 885-888, 2008.
doi:10.1109/EUMC.2008.4751595

3. Klemm, M., I. Z. Kovcs, G. F. Pederson, and G. Troster, "Novel small-size directional antenna for UWB WBAN/WPAN application," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 12, Dec. 2005.
doi:10.1109/TAP.2005.859906

4. Chan, K. C. L., Y. Huang, and X. Zhu, "A planar elliptical monopole antenna for UWB applications," IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics, 182-185, Apr. 2005.

5. Liang, J. X., C. C. Chian, X. D. Chen, and C. G. Parini, "Study of a printed circular disk monopole antenna for UWB systems," IEEE Transactions on Antennas and Propagation, Vol. 53, 3500-3504, Nov. 2005.

6. Mazinani, S. M. and H. R. Hassani, "A novel omni directional broadband planar monopole antenna with various loading plateshapes," Progress In Electromagnetics Research, Vol. 97, 241-257, 2009.
doi:10.2528/PIER09090203

7. Shafieha, J. H., J. Noorinia, and C. Ghobadi, "Probing the feed line parameters in Vivaldi notch antennas," Progress In Electromagnetics Research B, Vol. 1, 237-252, 2008.
doi:10.2528/PIERB07102702

8. Yang, Y., Y. Wang, and A. E. Fathy, "Design of compact Vivaldi antenna arrays for UWB see through wall applications," Progress In Electromagnetics Research, Vol. 82, 401-418, 2008.
doi:10.2528/PIER08040601

9. Yarovoy, A. G., "Antenna development for UWB impulse radio," Eur. Microwave Week, Amsterdam, Netherlands, Oct. 2004.

10. Lu, Y., Y. Huang, and H. T. Chattha, "Size reduction of a wideband slot antenna," 3rd European Conference on Antennas and Propagation, EuCAP 2009, 1455-1458, Mar. 23--27, 2009.

11. John, M., M. J. Ammann, and P. McEvoy, "UWB Vivaldi antenna based on a spline geometry with frequency band-notch," Antennas and Propagations Society International Symposium, 1-4, Jul. 2008.

12. Locatelli, A., D. Modotto, F. M. Pigazzo, S. Boscolo, E. Autizi, C. DeAngelis, A.-D. Capobianco, and M. Midrio, "Highly directional planar ultra wide band antenna for radar application," Proceedings of the 37th European Microwave Conference, 1421-1424, Oct. 2007.