Vol. 40
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-05-08
A Wideband Differential Bandpass Filter Based on T-Shaped Stubs and Single Ring Resonator
By
Progress In Electromagnetics Research Letters, Vol. 40, 39-48, 2013
Abstract
A wideband differential bandpass filter (BPF) with differential mode passband and common mode suppression is proposed and implemented on microstrip lines for wideband application in this letter. The initial BPF is similar to a single ring resonator with two unequal feed lines which have 180o separation and T-shaped stubs are loaded on the ring resonator to form an improved one for better performances. The lengths and widths of these stubs can be adjusted to produce a highly selectivity under the differential mode and improved attenuation under the common mode. This simple, compact structure is easy for construct without any coupling structure. Finally, a microstrip differential wideband BPF is designed, simulated, fabricated, and measured. The presented differential BPF has a 3-dB fractional bandwidth (FBW) of 38% for the differential mode and insertion loss greater than 17 dB for common mode. Good agreement between simulated and measured results is obtained.
Citation
Hui Wang, Wei Kang, Guo Yang, and Wen Wu, "A Wideband Differential Bandpass Filter Based on T-Shaped Stubs and Single Ring Resonator," Progress In Electromagnetics Research Letters, Vol. 40, 39-48, 2013.
doi:10.2528/PIERL13031502
References

1. Wang, X. H., Q. Xue, and W. W. Choi, "A novel ultra-wideband differential filter based on double-sided parallel-strip line," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 8, 471-473, 2010.
doi:10.1109/LMWC.2010.2050869

2. Lim, T. B. and L. Zhu, "Differential-mode ultra-wideband bandpass filter on microstrip line," Electron. Lett., Vol. 45, No. 22, 1124-1125, 2009.
doi:10.1049/el.2009.1416

3. Lim, T. B. and L. Zhu, "Highly selective differential-mode wideband bandpass filter for UWB application," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 3, 133-135, 2011.
doi:10.1109/LMWC.2011.2104357

4. Naqui, J., A. F. Prieto, M. D. Sindreu, F. Mesa, J. Matrel, F. Medina, and F. Martin, "Common-mode suppression in microstrip differential lines by means of complementary split ring resonators: theory and applications," IEEE Trans. on Microwave Theory & Tech., Vol. 60, No. 10, 3023-3034, 2012.
doi:10.1109/TMTT.2012.2209675

5. Lim, T. B. and L. Zhu, "A differential-mode wideband bandpass filter on microstrip line for UWB application," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 10, 632-634, 2009.
doi:10.1109/LMWC.2009.2029739

6. Shi, S. Y., W. W. Choi, W. Q. Che, K. W. Tam, and Q. Xue, "Ultra-wideband differential bandpass filter with narrow notched band and improved common-mode suppression by DGS," IEEE Microw. Wireless Compon. Lett., Vol. 22, No. 4, 185-187, 2012.
doi:10.1109/LMWC.2012.2187885

7. Zhu, H. T., W. J. Feng, W. Q. Che, Q. Xue, "Ultra-wideband differential bandpass filter based on transversal signal-interference concept," Electron. Lett., Vol. 47, No. 18, 1033-1035, 2011.
doi:10.1049/el.2011.2088

8. Wu, C. H., C. H.Wang, and C. H. Chen, "Novel balanced coupled-line bandpass filters with common-mode noise suppression," IEEE Trans. on Microwave Theory & Tech., Vol. 55, No. 2, 287-295, 2007.
doi:10.1109/TMTT.2006.889147

9. Wu, X. H. and Q. X. Chu, "Compact differential ultra-wideband bandpass filter with common-mode suppression," IEEE Microw. Wireless Compon. Lett., Vol. 22, No. 9, 456-458, 2012.
doi:10.1109/LMWC.2012.2213075

10. Shi, J. and Q. Xu, "Dual-band and wide-stopband single-band balanced bandpass filters with high selectivity and common-mode suppression," IEEE Trans. on Microwave Theory & Tech., Vol. 58, No. 8, 2204-2212, 2010.
doi:10.1109/TMTT.2010.2052959

11. Lim, S. C., C. Y, and Yeh, "Stopband-extended balanced filters using both l/4 and l/2 SIRs with common-mode suppression and improved passband selectivity," Progress In Electromagnetics Research, Vol. 128, 215-228, 2012.

12. Wu, S. M., C. T. Kuo, and C. H. Chen, "Very compact full differential bandpass filter with transformer integrated using integrated passive device technology," Progress In Electromagnetics Research Letters, Vol. 113, 251-267, 2011.

13. Wu, S. M., C. T. Kuo, P. Y. Lyu, Y. L. Shen, and C. I. Chien, "Miniaturization design of full differential bandpass filter with coupled resonators using embedded passive device technology," Progress In Electromagnetics Research Letters, Vol. 121, 365-379, 2011.

14. Nicollini, G., F. Moretti, and M. Conti, "High frequency fully differential filter using operation amplifiers without common-mode feedback," IEEE J. Solid-State Circuits, Vol. 24, No. 3, 803-813, 1989.
doi:10.1109/4.32043

15. Wang, H., W. Kang, C. Miao, and W. Wu, "Cross-shaped UWB bandpass filter with sharp skirt and notched band," Electron. Lett., Vol. 48, No. 2, 96-97, 2012.
doi:10.1049/el.2011.3694

16. Feng, W. J., W. Q. Che, and Q. Xue, "Compact ultra-ideband bandpass filter implemented with stepped impedance resonators and T-shaped line," International Conference on Micro. Millimeter Wave Tech., (ICMMT), 44-47, 2010.

17. Liu, G. Q., L. S. Wu, and W. Y. Yin, "A compact microstrip ratrace coupler with modified lange and T-shaped arms," Progress In Electromagnetics Research Letters, Vol. 115, 509-523, 2011.

18. Xie, J.-J., Y.-Z. Yin, S.-L. Pan, and L. Sun, "A novel circular slot antenna with two pairs of T-shaped slots for WLAN/WiMAX applications," Progress In Electromagnetics Research Letters, Vol. 32, 49-57, 2012.

19. Chen, L.-N., Y.-C. Jiao, Z. Zhang, F.-S. Zhang, and Y.-Y. Chen, "Miniaturized dual-mode substrate integrated waveguide (SIW) band-pass filters loaded by double/single T-shaped structures," Progress In Electromagnetics Research Letters, Vol. 29, 65-74, 2012.
doi:10.2528/PIERL11112602

20. Kang, L., Y.-Z. Yin, S.-T. Fan, and S.-J. Wei, "A novel rectangular slot antenna with embedded self-similar T-shaped strips for WLAN applications," Progress In Electromagnetics Research Letters, Vol. 15, 19-26, 2010.
doi:10.2528/PIERL10040908

21. Li, J.-F. and Q.-X. Chu, "Proximity-FED MIMO antenna with two printed IFAS and a wideband T-shaped neutralization line," Progress In Electromagnetics Research M, Vol. 21, 279-294, 2011.
doi:10.2528/PIERM11091509

22. Reed, J. and G. J. Wheeler, "A method of analysis of symmetrical four-port networks," IRE Trans. on Microwave Theory & Tech., Vol. 4, No. 4, 246-252, 1956.
doi:10.1109/TMTT.1956.1125071