Vol. 40
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-05-29
Miniaturized Hybrid Branch Line Couplers Based on a Square-Split Resonator Loading Technique
By
Progress In Electromagnetics Research Letters, Vol. 40, 153-162, 2013
Abstract
In this paper, new miniaturized hybrid branch line couplers loaded by square-split ring resonators are proposed. This loading technique increases the electrical length of transmission lines by patterning the ground plane under the conductor trace in microstrip lines with the complementary, dual-behavior, configuration of square-split ring resonators. Each branch is loaded by one resonator in the first coupler and by two resonators in the second coupler. Hence, compact sizes of 9.29 mm × 9.57 mm, and 8.88 mm × 9.11 mm, or equivalently 0.2λg × 0.2λg and 0.19λg × 0.19λg, respectively, are obtained at the operation frequency, 2.4 GHz. This corresponds to 66.14% and 60.18% of a conventional structure's area, respectively. Moreover, the new designs can suppress higher harmonic components due to the bandstop response of the square-split resonators at their resonant frequency while maintaining similar measured performance compared to the conventional branch-line hybrid coupler. Measured and simulated responses are in very good agreement which validates the proposed structures and technique. This technique can also be applied to minimize the size of other microwave circuits.
Citation
Lamia Al-Khateeb, "Miniaturized Hybrid Branch Line Couplers Based on a Square-Split Resonator Loading Technique," Progress In Electromagnetics Research Letters, Vol. 40, 153-162, 2013.
doi:10.2528/PIERL13041109
References

1. Pendry, J. B., A. J. Holden, D. J. Ribbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 2075-2084, Nov. 1999.
doi:10.1109/22.798002

2. Baena, J. D., J. Bonache, F. Martin, R. Marques, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia, I. Gil, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 4, 1451-1461, Apr. 2005.
doi:10.1109/TMTT.2005.845211

3. Caloz, C., H. Okabe, H. Iwai, and T. Itoh, "Transmission line approach of left-handed metamaterials," USNC/URSI National Science Meeting, San Antonio, TX, Jun. 16-21, 2002.

4. Saha, C., J. Y. Siddiqui, and Y. M. M. Antar, "Square split ring resonator backed coplanar waveguide for filter applications," 2011 XXXth URSI General Assembly and Scientific Symposium, 1-4, Aug. 13-20, 2011.

5. Falcone, F., T. Lopetegi, J. D. Baena, R. Marques, F. Martin, and M. Sorolla, "Effective negative-ε stopband microstrip lines based on complementary split ring resonators," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 6, 280-282, Jun. 2004.
doi:10.1109/LMWC.2004.828029

6. Pasakawee, S. and Z. Hu, "Left-handed microstrip delay line implemented by complementary split ring resonators (CSRRs)," Asia Pacific Microwave Conference 2009, 599-601, 2009.
doi:10.1109/APMC.2009.5384155

7. Eccleston, K. W. and S. H. M. Ong, "Compact planar microstripline branch-line and rat-race couplers," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 10, 2119-2125, Oct. 2003.
doi:10.1109/TMTT.2003.817442

8. Shum, K. M., Q. Xue, and C. H. Chan, "A novel microstrip ring hybrid incorporating a PBG cell," IEEE Microw. Wireless Compon. Lett., Vol. 11, No. 6, 258-260, Jun. 2001.
doi:10.1109/7260.928931

9. Mondal, P. and A. Chakrabarty, "Design of miniaturised branch-line and rat-race hybrid couplers with harmonics suppression," IET Microwaves, Antennas & Propagation, Vol. 3, No. 1, 109-116, Feb. 2009.
doi:10.1049/iet-map:20070202

10. Bekasiewicz, A., P. Kurgan, and M. Kitlinski, "New approach to a fast and accurate design of microwave circuits with complex topologies," topologies," IET Microwaves, Antennas & Propagation, Vol. 6, No. 14, 1616-1622, Nov. 2012.
doi:10.1049/iet-map.2012.0434

11. Jung, S.-C., R. Negra, and F. M. Ghannouchi, "A design methodology for miniaturized 3-dB branch-line hybrid couplers using distributed capacitors printed in the inner area," IEEE Trans. Microwave Theory Tech., Vol. 56, No. 2, 2950-2953, 2008.
doi:10.1109/TMTT.2008.2007323

12. Marques, R., F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design --- Theory and experiment," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2572-2581, Oct. 2003.
doi:10.1109/TAP.2003.817562

13. Zhang, J. and X.-W. Sun, "Harmonic suppression of branch-line and rat-race coupler using complementary spilt ring resonators (CSRR) cell," Progress In Electromagnetics Research Letters, Vol. 2, 73-79, 2008.
doi:10.2528/PIERL07122702

14. Zeland Software, Inc. "IE3D simulator,", Fremont, CA, 2007.

15. Simons, R. N., Coplanar Waveguide Circuits, Components, and Systems, John Wiley & Sons, New York, 2001.
doi:10.1002/0471224758

16. Martin, F., F. Falcone, J. Bonache, R. Marques, and M. Sorolla, "A new split ring resonator based left handed coplanar waveguide," Appl. Phys. Lett., Vol. 83, 4652-4654, 2003.
doi:10.1063/1.1631392