Vol. 41
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-07-09
A Monolayer Multi-Octave Bandwidth Log-Periodic Microstrip Antenna
By
Progress In Electromagnetics Research Letters, Vol. 41, 97-104, 2013
Abstract
In this paper, a novel monolayer multi-octave bandwidth log-periodic microstrip antenna (LPMA) is presented. This antenna consists of a 50 Ω microstrip feed-line and fourteen rectangular patch elements. Twelve rectangular patch elements are fed by edge-coupling from the microstrip feed-line and two other patch elements are directly connected with the microstrip feed-line. A mixed microstrip line feed is applied to expand the bandwidth. Our measured results closely agree with the simulated results. These results show that the proposed antenna lends itself well to operation in the impedance bandwidth from 2 GHz to 8 GHz with a voltage standing-wave ratio (VSWR) less than 2.
Citation
Fang Lei, Zengrui Li, Qing-Xin Guo, Hui Zhang, Xueqin Zhang, Jie Wang, Guosheng Liu, Jun-Hong Wang, and Yaoqing Lamar Yang, "A Monolayer Multi-Octave Bandwidth Log-Periodic Microstrip Antenna," Progress In Electromagnetics Research Letters, Vol. 41, 97-104, 2013.
doi:10.2528/PIERL13052105
References

1. Casula, G. A., P. Maxia, and G. Mazzarella, "A printed LPDA with UWB capability," International Workshop on Antenna Technology (iWAT), 1-4, Lisbon, Portugal, 2010.

2. Yu, C., W. Hong, and L. Chiu, "Ultrawideband printed log-periodic dipole antenna with multiple notched bands," IEEE Transactions on Antennas and Propagation, Vol. 59, 725-732, 2011.
doi:10.1109/TAP.2010.2103010

3. Lin, S., S. Luan, Y. Wang, X. Luo, X. Han, X.-Q. Zhang, Y. Tian, and X.-Y. Zhang, "A printed log-periodic tree-dipole antenna (PLPTDA)," Progress In Electromagnetics Research M, Vol. 21, 19-32, 2011.
doi:10.2528/PIERM11080109

4. Azim, R. and M. T. Islam, "Compact planar UWB antenna with band notch characteristics for WLAN and DSRC," Progress In Electromagnetics Research, Vol. 133, 391-406, 2013.

5. Li, G., H. Zhai, T. Li, X. Y. Ma, C.-H. Liang, and , "Design of a compact UWB antenna integrated with GSM/WCDMA/WLAN bands," Progress In Electromagnetics Research, Vol. 136, 409-419, 2013.

6. Casula, G. A., P. Maxia, G. Mazzarella, and G. Montisci, "Design of a printed log-periodic dipole array for ultra-wideband applications," Progress In Electromagnetics Research C, Vol. 38, 15-26, 2013.

7. Jordan, E. C. and K. G. Balmain, "Electromagnetic Waves and Radiating Systems," Chapter 15, Prentice Hall, New Jersey, 1968.

8. Rumsey, V. H., "Frequency Independent Antennas," Chapters 5 and 6, Academic Press, London, 1966.

9. Hall, P. S., "New wideband microstrip antenna using log-periodic technique," Electronic Letters, Vol. 16, 127-128, 1980.
doi:10.1049/el:19800095

10. Hall, P. S., "Multi-octave bandwidth log-periodic microstrip antenna array," IEE Proceedings H, Microwaves, Antennas and Propagation, Vol. 133, 127-136, 1986.
doi:10.1049/ip-h-2.1986.0021

11. Hamid, M. R., P. S. Hall, and P. Gardner, "Wideband reconfigurable log periodic patch array," Progress In Electromagnetics Research C, Vol. 34, 123-138, 2013.

12. Rahim, M. K. A., M. N. A. Karim, T. Masri, and A. Asrokin, "Comparison between straight and U shape of ultra wide band microstrip antenna using log periodic technique," IEEE International Conference on Ultra-Wideband, 696-699, 2007.

13. Wu, Q., R. H. Jin, and J. Geng, "A single-layer ultrawideband microstrip antenna," IEEE Transactions on Antennas and Propagation, Vol. 58, 211-214, 2010.