PIER Letters
 
Progress In Electromagnetics Research Letters
ISSN: 1937-6480
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 44 > pp. 87-92

A DUAL-BAND HIGH GAIN ANTENNA BASED ON SPLIT RING RESONATORS AND CORRUGATED PLATE

By Y. Ding, M. Li, H.-X. Chang, and K. Qin

Full Article PDF (368 KB)

Abstract:
In this paper, a dual-band high-gain antenna based on the split ring resonators (SRRs) and corrugated plate is presented. By combining the SRRs and corrugated plate, the presented antenna resonating at different frequencies with high performance is easily achieved based on the superposition of the electric fields radiated by the SRRs and the grooves. Both the simulated and measured results show that the gain is improved by 6 dB at 12.7 GHz and 6.5 dB at 14.2 GHz respectively compared with the conventional flat antenna without grooves. Moreover, half-power beam width (HPBW) of E-plane is reduced by more than 100 degrees at 12.7 GHz and 14.2 GHz.

Citation:
Y. Ding, M. Li, H.-X. Chang, and K. Qin, "A Dual-Band High Gain Antenna Based on Split Ring Resonators and Corrugated Plate," Progress In Electromagnetics Research Letters, Vol. 44, 87-92, 2014.
doi:10.2528/PIERL13112704

References:
1. Islam, M. T., M. N. Shakib, and N. Misran, "Design analysis of high gain wideband L-probe fed microstrip patch antenna," Progress In Electromagnetics Research , Vol. 95, 397-407, 2009.
doi:10.2528/PIER09080204

2. Sun, X. L., S. W. Cheung, and T. I. Yuk, "Dual-band monopole antenna with compact radiator for 2.4/3.5 GHz WiMAX applications," Microwave and Optical Technology Letters, Vol. 55, 1765-1770, 2013.
doi:10.1002/mop.27710

3. Pendry, J. B., A. J. Holden, D. J. Robebins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. on Microwave Theory and Tech., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002

4. Herraiz-Martinez, F. J., L. E. Garcia-Mu~noz, D. Gonzalez-Ovejero, V. Gonzalez-Posadas, and D. Segovia-Vargas, "Dual-frequency printed dipole loaded with split ring resonators," IEEE Antennas and Wireless Propag. Lett., Vol. 8, 137-140, 2009.
doi:10.1109/LAWP.2009.2012402

5. Liu, Y., X. Tang, Z. X. Zhang, and X. L. Huang, "Novel nested split-ring-resonator (SRR) for compact filter application," Progress In Electromagnetics Research, Vol. 136, 765-773, 2013.

6. Kim, D.-O., N.-I. Jo, H.-A. Jang, and C.-Y. Kim, "Design of the ultrawideband antenna with a quadruple-band rejection characteristics using a combination of the complementary split ring resonator," Progress In Electromagnetics Research, Vol. 112, 93-107, 2011.

7. Bait-Suwailam, M. M., O. F. Siddiqui, and O. M. Ramahi, "Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators," IEEE Antennas and Wireless Propag. Lett., Vol. 9, 876-879, 2010.
doi:10.1109/LAWP.2010.2074175

8. Zhang, H., Y. Q. Li, X. Chen, Y. Q. Fu, and N. C. Yuan, "Design of circular/dual-frequency linear polarization antennas based on the anisotropic complementary split ring resonator," IEEE Transaction on Antennas and Propagation, Vol. 57, 3352-3355, 2009.
doi:10.1109/TAP.2009.2029400

9. Xie, Y. H., C. Zhu, L. Li, and C. H. Liang, "A novel dual-band metamaterials antenna based on complementary split ring resonators," Microwave and Optical Technology Letters, Vol. 54, 1007-1009, 2012.
doi:10.1002/mop.26715

10. Huang, C., Z. Zhao, Q. Feng, and X. Luo, "A high-gain antenna consisting of two slot elements with a space larger than a wavelength," IEEE Antennas and Wireless Propag. Lett., Vol. 9, 159-161.
doi:10.1109/LAWP.2010.2044863

11. Beruete, M., I. Campillo, J. S. Dolado, and J. E. Rodriguez-Seco, "Enhanced microwave transmission and beaming using a subwavelength slot in corrugated plate," IEEE Antennas and Wireless Propag. Lett., Vol. 3, 328-330, 2004.
doi:10.1109/LAWP.2004.839461

12. Beruete, M., I. Campillo, J. S. Dolado, J. E. Rodriguez-Seco, E. Perea, F. Falcone, and M. Sorolla, "Dual-band low-profile corrugated feeder antenna," IEEE Antennas Wireless Propag. Lett., Vol. 54, 340-350, 2006.

13. Huang, C., Z. Zhao, Q. Feng, C. Wang, and X. Luo, "Grooves-assisted surface wave modulation in two-slot array for mutual coupling reduction and gain enhancement," IEEE Antennas and Wireless Propag. Lett., Vol. 8, 912-915, 2009.
doi:10.1109/LAWP.2009.2028587

14. Garc¶³a-Vidal, F. J. and L. Mart¶³n-Moreno, \, "Transmission and focusing of light in one-dimensional periodically nanostructured metals," Physical Review B, Vol. 66, 155412-1-10, 2002.

15. Simovski, C. R., P. A. Belov, and S. He, "Backward wave region and negative material parameters of a structure formed by lattices of wires and split-ring resonators," IEEE Transaction on Antennas and Propagation, Vol. 51, 2582-2591, 2003.
doi:10.1109/TAP.2003.817554

16. Chen, J.-Y., W.-L. Chen, J.-Y. Yeh, L.-W. Chen, and C.-C. Wang, "Comparative analysis of split-ring resonators for tunable negative permeability metamaterials based on anisotropic dielectric substrates," Progress In Electromagnetics Research M, Vol. 10, 25-38, 2009.
doi:10.2528/PIERM09110507


© Copyright 2010 EMW Publishing. All Rights Reserved