PIER Letters
 
Progress In Electromagnetics Research Letters
ISSN: 1937-6480
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 47 > pp. 1-5

DESIGN OF A MINIATURIZED ZEROTH- AND FIRST-ORDER RESONANT ANTENNA WITH MUSHROOM CELLS AND INTERDIGITAL CAPACITORS

By K. Li, Y.-M. Cai, L. Li, and C.-H. Liang

Full Article PDF (423 KB)

Abstract:
A novel design of miniaturized dual-bandantenna based on mushroom cell and interdigital capacitor is presented in this paper. Four transmission line (TL) elements are loaded in a microstrip antenna, and each one is composed ofamushroom cell and interdigital capacitors. The interdigital capacitors contribute to the series capacitance and metallicvia-hole of mushroom structuresresult in the shunt inductance in the equivalent circuit model. The antenna works as a zeroth-order (f0= 2.51 GHz) and first-order (f1 = 3.78 GHz) resonant antenna with varied radiation patterns. Omnidirectionalradiation pattern and unidirectional radiation pattern are obtained at 2.51 GHz and 3.78 GHz, respectively.The overall size of the antenna is only 0.25×0.25×0.017λ03 (at f0= 2.51 GHz). The proposed antenna features compact structure, low profile and easy fabrication. Good agreement between the simulated and measured results is also achieved, validating our design concept.

Citation:
K. Li, Y.-M. Cai, L. Li, and C.-H. Liang, "Design of a Miniaturized Zeroth- and First-Order Resonant Antenna with Mushroom Cells and Interdigital Capacitors," Progress In Electromagnetics Research Letters, Vol. 47, 1-5, 2014.
doi:10.2528/PIERL14050802

References:
1. Wong, K.-L., Compact and Broadband Microstrip Antennas, Vol. 168, John Wiley & Sons, 2004.

2. Sun, X., G. Zeng, H.-C. Yang, and Y. Li, "A compact quadband CPW-fed slot antenna for M-WiMAX/WLAN applications," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 395-398, 2012.
doi:10.1109/LAWP.2012.2192901

3. Dang, L., Z. Y. Lei, Y. J. Xie, G. L. Ning, and J. Fan, "A compact microstrip slot triple-band antenna for WLAN/WiMAX applications," IEEE Antennas Wirel. Propag. Lett., Vol. 9, 1178-1181, 2010.
doi:10.1109/LAWP.2010.2098433

4. Augustin, G., P. C. Bybi, V. P. Sarin, P. Mohanan, C. K. Aanandan, and K. Vasudevan, "A compact dual-band planar antenna for DCS-1900/PCS/PHS, WCDMA/IMT-2000, and WLAN Applications," IEEE Antennas Wirel. Propag. Lett., Vol. 7, 108-111, 2008.
doi:10.1109/LAWP.2008.919601

5. Majedi, M. S. and A. R. Attari, "A compact and broadband metamaterial -inspired antenna," IEEE Antennas Wirel Propag. Lett., Vol. 12, 345-348, 2013.
doi:10.1109/LAWP.2013.2248072

6. Gupta, D., P. Gupta, P. Chitransh, and P. K. Singhal, "Design and analysis of low pass microwave filter using metamaterial ground structure," 2014 International Conference on Signal Processing and Integrated Networks (SPIN), 388-392, 2014.
doi:10.1109/SPIN.2014.6776984

7. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, 2005.
doi:10.1002/0471754323

8. Gong, J. Q., J. B. Jiang, and C. H. Liang, "Low-profile folded-monopole antenna with unbalanced composite right-/left-handed transmission line," Electron. Lett., Vol. 48, No. 14, 813-815, 2012.
doi:10.1049/el.2012.0619

9. Xu, H.-X., G.-M. Wang, and M.-Q. Qi, "A miniaturized triple-band metamaterial antenna and polarization diversity," Progress In Electromagnetics Research, Vol. 137, 275-292, 2013.
doi:10.2528/PIER12081008

10. Liu, C.-C., P.-L. Chi, and Y.-D. Lin, "Compact zeroth-order resonant antenna based on dual-arm spiral configuration," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 318-321, 2012.
doi:10.1109/TAP.2011.2167907


© Copyright 2010 EMW Publishing. All Rights Reserved