Vol. 50

Latest Volume
All Volumes
All Issues
2014-11-12

Desktop Shaped Broadband Microstrip Patch Antennas for Wireless Communications

By Kamakshi, Jamshed Ansari, Ashish Singh, and Mohammad Aneesh
Progress In Electromagnetics Research Letters, Vol. 50, 13-18, 2014
doi:10.2528/PIERL14092903

Abstract

This paper presents a comparative study of rectangular base desktop shaped broadband patch antenna (Antenna1) and triangular base desktop shaped broadband patch antenna (Antenna2). Apart from base dimensions all parameters of both antennas are constant. The broadband characteristics are achieved by introducing two parasitic ground planes and notches are etched on the radiating patch. Both antennas are simulated, fabricated and tested for obtaining the desired performance. The designed Antenna1 shows bandwidth of 39.97% (4.95 GHz to 7.42 GHz) whereas an improved bandwidth of 49.0% (4.53 GHz to 7.47 GHz) is achieved through Antenna2. Further, gain and radiation pattern of the two antennas are compared and discussed. The effect of inclination angle `α' on Antenna2 characteristics in obtaining the improved bandwidth is also studied. The proposed antennas are simulated, and results are verified experimentally.

Citation


Kamakshi, Jamshed Ansari, Ashish Singh, and Mohammad Aneesh, "Desktop Shaped Broadband Microstrip Patch Antennas for Wireless Communications," Progress In Electromagnetics Research Letters, Vol. 50, 13-18, 2014.
doi:10.2528/PIERL14092903
http://www.jpier.org/PIERL/pier.php?paper=14092903

References


    1. Schaubert, D. H., D. M. Pozar, and A. Adrian, "Effect of microstrip antenna substrate thickness and permittivity: Comparison of theories and experiments," IEEE Transactions on Antennas and Propagation, Vol. 37, 677-682, 1989.
    doi:10.1109/8.29353

    2. Pues, H. F. and A. R. Van De Capelle, "An impedance technique for increasing the bandwidth of microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 37, 1345-1354, 1989.
    doi:10.1109/8.43553

    3. Sarin, V. P., M. S. Nishamol, D. Tony, C. K. Aanandan, P. Mohanan, and K. Vasudevan, "A broadband L-strip fed printed microstrip antenna," IEEE Transactions on Antennas and Propagation, Vol. 59, 281-284, 2011.
    doi:10.1109/TAP.2010.2090641

    4. Guo, Y. X., K. M. Luk, and K. F. Lee, "L-probe proximity fed annular ring microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 49, 19-21, 2001.
    doi:10.1109/8.910524

    5. Mak, C. L., K. F. Lee, and K. M. Luk, "Broadband patch antenna with a T-shaped probe," IEE Proceedings Microwaves, Antennas and Propagation, Vol. 147, 73-76, 2000.
    doi:10.1049/ip-map:20000264

    6. Danideh, A. and R. Sadeghi-Fakhr, "Wideband co-planar microstrip patch antenna," Progress In Electromagnetics Research Letters, Vol. 4, 81-89, 2008.
    doi:10.2528/PIERL08050606

    7. Rafi, G. H. and L. Safai, "Broadband microstrip patch antenna with V-slot," IEE Proceeding Microwave Antenna Propagation, Vol. 151, 435-440, 2004.
    doi:10.1049/ip-map:20040846

    8. Mak, C. L., R. Chair, K. F. Lee, K. M. Luk, and A. A. Kishk, "Half U-slot patch antenna with shorting wall," Electronics Letters, Vol. 39, 1779-1780, 2003.
    doi:10.1049/el:20031217

    9. Ang, B. K. and B. K. Chung, "A wideband E-shaped microstrip patch antenna for 5–6 GHz wireless communications," Progress In Electromagnetics Research, Vol. 75, 397-407, 2007.
    doi:10.2528/PIER07061909

    10. Chen, Y., S. Yang, and Z. Nie, "Bandwidth enhancement method for low profile E-shaped microstrip patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 58, 2442-2447, 2010.
    doi:10.1109/TAP.2010.2048850

    11. Chen, Y. and C.-F. Wang, "Characteristic-mode-based improvement of circularly polarized U-slot and E-shaped patch antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1474-1477, 2012.
    doi:10.1109/LAWP.2012.2231046

    12. Yang, F., X.-X. Zhang, X. Ye, and Y. Rahmat-Samii, "Wide-band E-shaped patch antennas for wireless communications," IEEE Transactions on Antennas and Propagation, Vol. 49, 1094-1100, 2002.
    doi:10.1109/8.933489

    13. Islam, M. T., M. N. Shakib, and N. Misran, "Broadband E-H shaped microstrip patch antenna for wireless systems," Progress In Electromagnetics Research, Vol. 98, 163-173, 2009.
    doi:10.2528/PIER09082302

    14. Bhardwaj, S. and Y. Rahmat-Samii, "A comparative study of C-shaped, E-shaped, and U-slotted patch antennas," Microwave and Optical Technology Letters, Vol. 54, 1746-1757, 2012.
    doi:10.1002/mop.26894

    15. Wang, Y. J., C. K. Lee, and N. C. Karmakar, "A novel microstrip patch antenna for 3G IMT-2000 mobile handsets," Microwave and Optical Technology Letters, Vol. 31, 488-491, 2001.
    doi:10.1002/mop.10069

    16. Bimpas, M. and N. Uzunoglu, "Development of a broadband E-shaped ground penetrating microstrip radiator combining microstrip resonators and a slotted ground plane," Microwave and Optical Technology Letters, Vol. 44, 172-176, 2005.
    doi:10.1002/mop.20579

    17. Deshmukh, A. A. and K. P. Ray, "Analysis of broadband Psi Ψ-shaped microstrip antennas," IEEE Antennas and Propagation Magazine, Vol. 55, 107-123, 2013.
    doi:10.1109/MAP.2013.6529321

    18. Sim, C.-Y. D. and T.-Y. Han, "Compact designs of a shorted triangular patch antenna with a V-slot," Microwave and Optical Technology Letters, Vol. 49, 34-37, 2007.
    doi:10.1002/mop.22061

    19. Shanmuganantham, T. and S. Raghavan, "Design of a compact broadband microstrip patch antenna with probe feeding for wireless applications," International Journal of Electronics and Communication, Vol. 63, 653-659, 2009.
    doi:10.1016/j.aeue.2008.05.009

    20. IE3D Simulation Software, Version 14.05, Zeland Software Inc., USA, 2008.