PIER Letters
 
Progress In Electromagnetics Research Letters
ISSN: 1937-6480
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 50 > pp. 13-18

DESKTOP SHAPED BROADBAND MICROSTRIP PATCH ANTENNAS FOR WIRELESS COMMUNICATIONS

By Kamakshi, J. A. Ansari, A. Singh, and M. Aneesh

Full Article PDF (180 KB)

Abstract:
This paper presents a comparative study of rectangular base desktop shaped broadband patch antenna (Antenna1) and triangular base desktop shaped broadband patch antenna (Antenna2). Apart from base dimensions all parameters of both antennas are constant. The broadband characteristics are achieved by introducing two parasitic ground planes and notches are etched on the radiating patch. Both antennas are simulated, fabricated and tested for obtaining the desired performance. The designed Antenna1 shows bandwidth of 39.97% (4.95 GHz to 7.42 GHz) whereas an improved bandwidth of 49.0% (4.53 GHz to 7.47 GHz) is achieved through Antenna2. Further, gain and radiation pattern of the two antennas are compared and discussed. The effect of inclination angle `α' on Antenna2 characteristics in obtaining the improved bandwidth is also studied. The proposed antennas are simulated, and results are verified experimentally.

Citation:
Kamakshi, J. A. Ansari, A. Singh, and M. Aneesh, "Desktop Shaped Broadband Microstrip Patch Antennas for Wireless Communications," Progress In Electromagnetics Research Letters, Vol. 50, 13-18, 2014.
doi:10.2528/PIERL14092903

References:
1. Schaubert, D. H., D. M. Pozar, and A. Adrian, "Effect of microstrip antenna substrate thickness and permittivity: Comparison of theories and experiments," IEEE Transactions on Antennas and Propagation, Vol. 37, 677-682, 1989.
doi:10.1109/8.29353

2. Pues, H. F. and A. R. Van De Capelle, "An impedance technique for increasing the bandwidth of microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 37, 1345-1354, 1989.
doi:10.1109/8.43553

3. Sarin, V. P., M. S. Nishamol, D. Tony, C. K. Aanandan, P. Mohanan, and K. Vasudevan, "A broadband L-strip fed printed microstrip antenna," IEEE Transactions on Antennas and Propagation, Vol. 59, 281-284, 2011.
doi:10.1109/TAP.2010.2090641

4. Guo, Y. X., K. M. Luk, and K. F. Lee, "L-probe proximity fed annular ring microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 49, 19-21, 2001.
doi:10.1109/8.910524

5. Mak, C. L., K. F. Lee, and K. M. Luk, "Broadband patch antenna with a T-shaped probe," IEE Proceedings Microwaves, Antennas and Propagation, Vol. 147, 73-76, 2000.
doi:10.1049/ip-map:20000264

6. Danideh, A. and R. Sadeghi-Fakhr, "Wideband co-planar microstrip patch antenna," Progress In Electromagnetics Research Letters, Vol. 4, 81-89, 2008.
doi:10.2528/PIERL08050606

7. Rafi, G. H. and L. Safai, "Broadband microstrip patch antenna with V-slot," IEE Proceeding Microwave Antenna Propagation, Vol. 151, 435-440, 2004.
doi:10.1049/ip-map:20040846

8. Mak, C. L., R. Chair, K. F. Lee, K. M. Luk, and A. A. Kishk, "Half U-slot patch antenna with shorting wall," Electronics Letters, Vol. 39, 1779-1780, 2003.
doi:10.1049/el:20031217

9. Ang, B. K. and B. K. Chung, "A wideband E-shaped microstrip patch antenna for 5–6 GHz wireless communications," Progress In Electromagnetics Research, Vol. 75, 397-407, 2007.
doi:10.2528/PIER07061909

10. Chen, Y., S. Yang, and Z. Nie, "Bandwidth enhancement method for low profile E-shaped microstrip patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 58, 2442-2447, 2010.
doi:10.1109/TAP.2010.2048850

11. Chen, Y. and C.-F. Wang, "Characteristic-mode-based improvement of circularly polarized U-slot and E-shaped patch antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1474-1477, 2012.
doi:10.1109/LAWP.2012.2231046

12. Yang, F., X.-X. Zhang, X. Ye, and Y. Rahmat-Samii, "Wide-band E-shaped patch antennas for wireless communications," IEEE Transactions on Antennas and Propagation, Vol. 49, 1094-1100, 2002.
doi:10.1109/8.933489

13. Islam, M. T., M. N. Shakib, and N. Misran, "Broadband E-H shaped microstrip patch antenna for wireless systems," Progress In Electromagnetics Research, Vol. 98, 163-173, 2009.
doi:10.2528/PIER09082302

14. Bhardwaj, S. and Y. Rahmat-Samii, "A comparative study of C-shaped, E-shaped, and U-slotted patch antennas," Microwave and Optical Technology Letters, Vol. 54, 1746-1757, 2012.
doi:10.1002/mop.26894

15. Wang, Y. J., C. K. Lee, and N. C. Karmakar, "A novel microstrip patch antenna for 3G IMT-2000 mobile handsets," Microwave and Optical Technology Letters, Vol. 31, 488-491, 2001.
doi:10.1002/mop.10069

16. Bimpas, M. and N. Uzunoglu, "Development of a broadband E-shaped ground penetrating microstrip radiator combining microstrip resonators and a slotted ground plane," Microwave and Optical Technology Letters, Vol. 44, 172-176, 2005.
doi:10.1002/mop.20579

17. Deshmukh, A. A. and K. P. Ray, "Analysis of broadband Psi Ψ-shaped microstrip antennas," IEEE Antennas and Propagation Magazine, Vol. 55, 107-123, 2013.
doi:10.1109/MAP.2013.6529321

18. Sim, C.-Y. D. and T.-Y. Han, "Compact designs of a shorted triangular patch antenna with a V-slot," Microwave and Optical Technology Letters, Vol. 49, 34-37, 2007.
doi:10.1002/mop.22061

19. Shanmuganantham, T. and S. Raghavan, "Design of a compact broadband microstrip patch antenna with probe feeding for wireless applications," International Journal of Electronics and Communication, Vol. 63, 653-659, 2009.
doi:10.1016/j.aeue.2008.05.009

20. IE3D Simulation Software, Version 14.05, Zeland Software Inc., USA, 2008.


© Copyright 2010 EMW Publishing. All Rights Reserved