PIER Letters
 
Progress In Electromagnetics Research Letters
ISSN: 1937-6480
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 50 > pp. 19-27

ANALYSIS OF MM-WAVE BANDS QUASI-OPTICAL UNSTABLE BESSEL-GAUSS RESONATOR BY IDGF ALGORITHM

By Y.-Z. Yu, H. F. Meng, and W.-B. Dou

Full Article PDF (777 KB)

Abstract:
An analysis of quasi-optical unstable Bessel-Gauss resonator (QOUBGR) at millimeter wavelengths is presented in this paper. The QOUBGR, formed by a conical mirror and a convex mirror, is designed on the basic of quasi-optical theory and techniques. For the purpose of precisely analyzing the designed QOUBGR, a new algorithm known as iterative dyadic Green's functions (IDGF) is proposed, which originates from famous Fox-Li algorithm. The IDGF algorithm can calculate not only two-dimension (2-D) but also three-dimension (3-D) resonating modes in the cavity. Simulation results demonstrate that the designed QOUBGR can steadily support both zero-order and high-order resonant modes that are approximations to Bessel-Gauss beams. These beams will find their promising applications in the MM- and/or quasi-optical imaging and measurement systems.

Citation:
Y.-Z. Yu, H. F. Meng, and W.-B. Dou, "Analysis of MM-Wave Bands Quasi-Optical Unstable Bessel-Gauss Resonator by Idgf Algorithm," Progress In Electromagnetics Research Letters, Vol. 50, 19-27, 2014.
doi:10.2528/PIERL14100304

References:
1. Durnin, J., "Exact solutions for nondiffracting beams. I. The scalar theory," J. Opt. Soc. Am. A, Vol. 4, No. 4, 651-654, 1987.
doi:10.1364/JOSAA.4.000651

2. Durnin, J., J. J. Miceli, Jr., and J. H. Eberly, "Diffraction-free beams," Phys. Rev. Lett., Vol. 58, No. 15, 1499-1501, 1987.
doi:10.1103/PhysRevLett.58.1499

3. Gori, F., G. Guattari, and C. Padovani, "Bessel-Gauss beams," Opt. Commun., Vol. 64, No. 6, 491-495, 1987.
doi:10.1016/0030-4018(87)90276-8

4. Mahon, R. J., et al., "Novel techniques for millimeter wave imaging systems operating at 100 GHz," Proc. SPIE Int. Soc. Opt. Eng., Vol. 5789, 93-100, 2005.

5. Lu, J., et al., "In vitro and in vivo real-time imaging with ultrasonic limited diffraction beams," IEEE Trans. Med. Imag., Vol. 12, No. 12, 819-829, 1993.
doi:10.1109/42.251134

6. Hegner, M., "Optics: The light fantastic," Nature, Vol. 419, 125-127, 2002.
doi:10.1038/419125a

7. Garces-Chavez, V., D. Mcgloin, and E. H. Melvill, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature, Vol. 419, 145-147, 2002.
doi:10.1038/nature01007

8. Hughes, S. and J. M. Burzler, "Theory of Z-scan measurements using Gaussian-Bessel beams," Physical Review A, Vol. 56, No. 2, R1103-R1106, 1997.
doi:10.1103/PhysRevA.56.R1103

9. Cox, A. J. and D. C. Dibble, "Nondiffracting beam from a spatially filtered Fabry-Perot resonator," J. Opt. Soc. Am. A, Vol. 9, No. 2, 282-286, 1992.
doi:10.1364/JOSAA.9.000282

10. Monk, S., et al., "The generation of Bessel beams at millimetre-wave frequencies by use of an axicon," Opt. Commun., Vol. 170, 213-215, 1999.
doi:10.1016/S0030-4018(99)00463-0

11. Meltaus, J., et al., "Millimeter-wave beam shaping using holograms," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 4, 1274-1279, 2003.
doi:10.1109/TMTT.2003.809679

12. Muys, P. and E. Vandamme, "Direct generation of Bessel beams," Appl. Opt., Vol. 41, 6375-6379, 2002.
doi:10.1364/AO.41.006375

13. Hernandez-Aranda, R. I., S. Chavez-Cerda, and J. C. Gutierrez-Vega, "Theory of the unstable Bessel resonator," J. Opt. Soc. Am. A, Vol. 22, 1909-1917, 2005.
doi:10.1364/JOSAA.22.001909

14. Wu, F. T., Y. B. Chen, and D. D. Guo, "Nanosecond pulsed Bessel-Gauss beam generated directly from a Nd: YAG axicon-based resonator," Appl. Opt., Vol. 46, No. 22, 4943-4947, 2007.
doi:10.1364/AO.46.004943

15. Khilo, A. N., E. G. Katranji, and A. A. Ryzhevich, "Axicon-based Bessel resonator: Analytical description and experiment," J. Opt. Soc. Am. A, Vol. 18, No. 8, 1986-1992, 2001.
doi:10.1364/JOSAA.18.001986

16. Rogel-Salazar, J., G. H. C. New, and S. Chávez-Cerda, "Bessel-Gauss beam optical resonator," Opt. Commun., Vol. 190, 117-122, 2001.
doi:10.1016/S0030-4018(01)01075-6

17. Tsangaris, C. L., G. H. C. New, and J. Rogel-Salazar, "Unstable Bessel beam resonator," Opt. Commun., Vol. 223, 233-238, 2003.
doi:10.1016/S0030-4018(03)01681-X

18. Ling, D. X. and J. C. Li, "Analysis of eigenfields in the axicon-based Bessel-Gauss resonator by the transfer-matrix method," J. Opt. Soc. Am. A, Vol. 23, No. 4, 912-918, 2006.
doi:10.1364/JOSAA.23.000912

19. Yu, Y.-Z. and W.-B. Dou, "Quasi-optical Bessel resonator," Progress In Electromagnetics Research, Vol. 93, 205-219, 2009.
doi:10.2528/PIER09042902

20. Yu, Y.-Z. and W.-B. Dou, "Investigation of quasi-optical Bessel-Gauss resonator at mm- and submm-wavelengths," Progress In Electromagnetics Research, Vol. 138, 453-466, 2013.
doi:10.2528/PIER13022007

21. Meng, H. F., B. Xiang, J. L. Zhang, W. B. Dou, and Y. Z. Yu, "The generation of bessel beam and its application in millimeter wave imaging," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 35, No. 2, 208-217, 2014.
doi:10.1007/s10762-013-0037-9

22. Bagini, V., F. Frezza, M. Santarsiero, G. Schettini, and G. Schirripa Spagnolo, "Generalized Bessel-Gauss beams," Journal of Modern Optics, Vol. 43, No. 6, 1155-1166, 1996.

23. Fox, A. G. and T. Li, "Resonant modes in a maser interferometer," Bell Syst. Tech. J., Vol. 40, 453-488, 1961.
doi:10.1002/j.1538-7305.1961.tb01625.x

24. Hsu, W. and R. Barakat, "Stratton-Chu vectorial diffraction of electromagnetic fields by apertures with application to small-Fresnel-number systems," J. Opt. Soc. Am. A, Vol. 11, No. 2, 623-629, 1994.
doi:10.1364/JOSAA.11.000623

25. Eroglu, A. and J. K. Lee, "Simplified formulation of dyadic Green’s functions and their duality relations for general anisotropic media," Progress In Electromagnetics Research, Vol. 77, 391-408, 2007.
doi:10.2528/PIER07082401

26. Gao, G., C. Torres-Verdin, and T. M. Habashy, "Analytical techniques to evaluate the integrals of 3D and 2D spatial dyadic Green’s functions," Progress In Electromagnetics Research, Vol. 52, 47-80, 2005.
doi:10.2528/PIER04070201

27. Li, L.-W., N.-H. Lim, W.-Y. Yin, and J.-A. Kong, "Eigenfunctional expansion of dyadic Green’s functions in gyrotropic media using cylindrical vector wave functions," Progress In Electromagnetics Research, Vol. 43, 101-121, 2003.
doi:10.2528/PIER03020201

28. Hanson, G. W., A. I. Nosich, and E. M. Kartchevski, "Green’s function expansions in dyadic root functions for shielded layered waveguides," Progress In Electromagnetics Research, Vol. 39, 61-91, 2003.
doi:10.2528/PIER02082205

29. Li, L. W., S. B. Yeap, M. S. Leong, T. S. Yeo, and P. S. Kooi, "Dyadic Green’s functions in multilayered stratified gyroelectric chiral media," Progress In Electromagnetics Research, Vol. 35, 53-81, 2002.
doi:10.2528/PIER01042401

30. Tan, E. L. and S. Y. Tan, "On the eigenfunction expansions of the dyadic Green’s functions for bianisotropic media," Progress In Electromagnetics Research, Vol. 20, 227-247, 1998.
doi:10.2528/PIER98022500

31. Gao, Z. H., "Wave pattern property of self-reproductive mode in laser resonator," Guangzi Xuebao/Acta Photonica Sinica, Vol. 29, No. 8, 726-729, 2000.


© Copyright 2010 EMW Publishing. All Rights Reserved