Vol. 52
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-03-16
Rigorous Approach of the Constitutive Relations for Nonlinear Chiral Media
By
Progress In Electromagnetics Research Letters, Vol. 52, 57-62, 2015
Abstract
A new mathematical approach is proposed to highlight the nonlinear effect in a chiral medium, which is due to the magnetization vector under the influence of a strong electric field. In a chiral media, one can notice the coupling between the electric and magnetic quantities, which appears in the constitutive relations of the medium. According to our proposed approach, we illustrate the existence of the difference between a nonlinear achiral medium and a nonlinear chiral medium, where not only the polarization vector has a nonlinear form but also the magnetization vector. Thus, the nonlinear chiral medium is described by the new constitutive relations DgE0μ0ξEHH and BH0μ0ξHEgE. Therefore, a better fundamental understanding of the interaction between the electromagnetic waves and chiral media can be contemplated.
Citation
Zinelabiddine Mezache, and Fatiha Benabdelaziz, "Rigorous Approach of the Constitutive Relations for Nonlinear Chiral Media," Progress In Electromagnetics Research Letters, Vol. 52, 57-62, 2015.
doi:10.2528/PIERL15021107
References

1. Jaggard, D. L., A. R. Mickelson, and C. H. Papas, "On electromagnetic waves in chiral media," Applied Physics, Vol. 28, 211-216, 1979.
doi:10.1007/BF00934418

2. Bassiri, K. S., C. H. Papas, and N. Engheta, "Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab," Journal of Optical Society of America A, Vol. 5, No. 9, 1450-1459, 1988.
doi:10.1364/JOSAA.5.001450

3. Haddad, M., F. Jonsson, R. Frey, and C. Flytzanis, "Nonlinear optical gyrotropy," Nonlinear Optics, Vol. 23, 251-267, 2000.

4. Persoons, A., "Nonlinear optics, chirality, magneto-optics: A serendipitous road," Opt. Express, Vol. 1, No. 1, 5-16, 2011.
doi:10.1364/OME.1.000005

5. Yariv, A. and P. Yeh, Optical Waves in Crystal, John Wiely and Sons, New York, 1984.

6. Shivola, A. H. and I. V. Lindell, "Chiral Maxwell Garnett mixing formula," Electronics Letters, Vol. 26, No. 2, 118-119, 1990.
doi:10.1049/el:19900081

7. Sihvola, A. H. and I. V. Lindell, "Bi-isotropic constitutive relations," Micro. Opt. Tech. Lett., Vol. 4, No. 3, 391-396, 1991.

8. Li, L. W. and W. Y. Yin, "Complex media," Encyclopedia of RF and Microwave Engineering, 2005.

9. Liaskos, K. B., I. G. Stratis, and A. N. Yannacopoulos, "A priori estimates for a singular limit approximation of laws for chiral media in the time domain," J. Math Anal. Appl., Vol. 35, 288-302, 2009.
doi:10.1016/j.jmaa.2009.01.062

10. Stratis, I. G. and A. N. Yannacopoulos, "Electromagnetic fields in linear and nonlinear chiral media: time-domain analysis," Abstr. Appl. Anal., 471-486, 2004.
doi:10.1155/S1085337504306287

11. Mani Rajan, M. S., A. Mahalingam, J. E. Sipe, and A. Uthayakumar, "Nonlinear tunneling of nonautonomous optical solutions in combined nonlinear Schr¨odinger and Maxwell-Bloch systems," Journal of Optics, Vol. 14, 105204-7, 2012.

12. Li, J., L. Jin, and C. Li, "Bandgap separation and optical switching in nonlinear chiral photonic crystal with layered structure," IEEE Photonics Technology Letters, Vol. 18, No. 11, Jun. 1, 2006.

13. Boyd, R. W., J. E. Sipe, and P. W. Milonni, "Chirality and polarization effects in nonlinear optics," Journal of Optics A: Pure Appl. Opt., Vol. 6, S14-S17, 2004.
doi:10.1088/1464-4258/6/3/002

14. Hayata, K. and M. Koshiba, "Chirosolitons: Unique spatial solitons in chiral media," IEEE Transactions on Microwave Theory and Techniques, Vol. 43, No. 8, 1814-1818, Aug. 1995.
doi:10.1109/22.402265

15. Cheng, D., "Nonlinear waves in doped material with uniaxial electrical-magnetic coupling," Progress In Electromagnetics Research, Vol. 46, 189-202, 2004.
doi:10.2528/PIER03091703