PIER Letters
Progress In Electromagnetics Research Letters
ISSN: 1937-6480
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 53 > pp. 71-76


By O. M. H. Ahmed

Full Article PDF (238 KB)

In this article, the design of an electromagnetically-coupled millimeter-wave elliptical patch array antenna prepared to work in the 56-65 GHz (14.8%) frequency band is presented. The introduced antenna array is designed for low-loss, high-gain and low cross-polarization levels. The proposed antenna exhibits a measured gain of 8 dBi and good linear polarization across the desired frequency range. It has a good side lobe suppression better than 17 dB in both E- and H-planes. Measured and simulated results confirm that this antenna is a good candidate for short-range wireless communication applications at millimeter-wave frequencies.

O. M. H. Ahmed, "Electromagnetically-Coupled Millimeter-Wave Antenna Array with Non-Uniform Distribution for 60 GHz ISM Applications," Progress In Electromagnetics Research Letters, Vol. 53, 71-76, 2015.

1. Fisher, R., "60 GHz WPAN standardization within IEEE 802.15.3c," Proc. Int. Symp. on Signals, Systems and Electronics, 103-105, 2007.

2. Br’egains, J. C., L. Castedo, and F. Ares, "A WiMAX conformal broad-beam antenna," IEEE Antennas and Propagation Magazine, Vol. 52, 106-109, 2011.

3. Haraz, O., S. Almorqi, A.-R. Sebak, and S. A. Alshebeili, "High-gain broadband antennas for 60-GHz short-range wireless communications," Wideband, Multiband, and Smart Reconfigurable Antennas for Modern Wireless Communications, M. A. Matin (ed.), in Press.

4. Nakano, S. H., Y. Hirachi, J. Hirokawa, and M. Ando, "Cost-effective 60-GHz antenna-package with end-fire radiation from open-ended post-wall waveguide for wireless file-transfer system," Proc. IEEE MTT-S Int. Microwave Symp. Digest (MTT), 449-452, May 23–28, 2010.

5. Sun, M., X. Qing, and Z. N. Chen, "60-GHz antipodal Fermi antennas on PCB," Proc. Eur. Conf. on Antennas and Propagation, 11-15, Rome, Italy, Apr. 2011.

6. Elboushi, A. M., O. Ahmed, A. Sebak, and T. Denidni, "A new circularly polarized high gain DRA millimeter-wave antenna," IEEE International Symposium on Antennas and Propagation and CNC/USNC/URSI Radio Science Meeting (AP-S/URSI), 1-4, Toronto, Canada, Jul. 11–17, 2010.

7. Haraz, O. M., A.-R. Sebak, and S. A. Alshebeili, "Study the effect of using low-cost dielectric lenses with printed log-periodic dipole antennas for millimeter-wave applications," International Journal of Antennas and Propagation,, Vol. 2015, Article ID 209430, 7 Pages, 2015, Doi: 10.1155/2015/209430.

8. Haraz, O. M., A.-R. Sebak, and S. A. Alshebeili, "Performance investigation of V-band PLPDA antenna loaded with a hemispherical dielectric lens for millimeter-wave applications," Microwave and Optical Technology Letters, Vol. 57, No. 3, 630-634, Mar. 2015.

9. Haraz, O. M., A.-R. Sebak, and S. A. Alshebeili, "Low-cost high gain printed log-periodic dipole array antenna with dielectric lenses for V-band applications," IET Microwaves, Antennas and Propagation, Vol. 9, No. 6, 541-552, Nov. 24, 2014, Doi: 10.1049/iet-map.2014.0319.

10. Haraz, O. M., A.-R. Sebak, and S. A. Alshebeili, "Design of a printed log-periodic dipole array antenna with high gain for millimeter-wave applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 25, No. 3, 185-193, 2015, Doi: 10.1002/mmce.20848.

© Copyright 2010 EMW Publishing. All Rights Reserved