Vol. 54
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-06-28
A Horizontally Polarized Omnidirectional Antenna with a Reflector for Ceiling-Mounted Indoor Applications
By
Progress In Electromagnetics Research Letters, Vol. 54, 27-32, 2015
Abstract
A novel wideband horizontally polarized omnidirectional antenna (HPOA) with an electrical conductor reflector is proposed for the 4th generation (4G) Long Term Evolution (LTE) applications. The proposed antenna consists of four pairs of printed dipoles distributed on the front and back of the substrate, and a star-shape patch integrated with stepped parallel strip lines constitutes a balun for the unbalance-balance transition from the coax feeding to the antenna. Both simulated and measured reflection coefficients (S11) demonstrate a wide -10 dB impedance bandwidth of 39.6%, from 1.82 to 2.72 GHz. This band covers PCS, UMTS, LTE 2300, LTE 2500, WLAN and Bluetooth bands. The presented antenna has a peak gain of 3.2 and 4.0 dBi at 1.95 and 2.48 GHz, respectively, and an omnidirectional radiation pattern in E-plane. HPOA may be suitable for ceiling-mounted indoor 4G applications.
Citation
Xiao-Yan Zhang, Xinxing Zhong, Zhiwei Liu, and Bincheng Li, "A Horizontally Polarized Omnidirectional Antenna with a Reflector for Ceiling-Mounted Indoor Applications," Progress In Electromagnetics Research Letters, Vol. 54, 27-32, 2015.
doi:10.2528/PIERL15051901
References

1. Soras, C., M. Karaboikis, G. Tsachtsiris, and V. Makios, "Analysis and design of an inverted-F antenna printed on a PCMCIA card for the 2.4GHz ISM band," IEEE Antennas Propag. Mag., Vol. 44, No. 1, 37-44, Feb. 2002.
doi:10.1109/74.997891

2. Chizhik, D., J. Ling, and R. A. Valenzuela, "The effect of electric field polarization on indoor propagation," Proc. IEEE Int. Conf. Universal Personal Communications, Vol. 1, 459-462, Oct. 1998.

3. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Edition, Wiley-Interscience, Hoboken, NJ, 2005.

4. Alford, A. and A. G. Kandoian, "Ultra-high frequency loop antenna," Trans. AIEE, Vol. 59, 843-848, 1940.

5. Lin, C. C., L. C. Kuo, and H. R. Chuang, "A horizontally polarized omnidirectional printed antenna for WLAN applications," IEEE Trans. Antennas Propag., Vol. 54, No. 11, 3551-3556, Nov. 2006.
doi:10.1109/TAP.2006.884307

6. Ahn, C. H., S. W. Oh, and K. Chang, "A dual-frequency omnidirectional antenna for polarization diversity of MIMO and wireless communication applications," IEEE Antennas Wireless Propag. Lett., Vol. 8, 966-969, 2009.

7. Chen, J. Y., X. M. Zhang, X. W. Dai, C. B. Zhang, and C. Jiang, "A broadband dual-polarization ceiling-mounted antenna with a nesting structure," Proc. ISSSE, Vol. 2, 1-3, 2010.

8. Wei, K., Z. Zhang, and Z. Feng, "Design of a wideband horizontally polarized omnidirectional printed loop antenna," IEEE Antennas Wireless Propag. Lett., Vol. 11, 49-52, 2012.

9. Quan, X. L., R. L. Li, J. Y. Wang, and Y. H. Cui, "Development of a broadband horizontally polarized omnidirectional planar antenna and its array for base stations," Progress In Electromagnetics Research, Vol. 128, 441-456, 2012.
doi:10.2528/PIER12042405

10. Van Heuven, J. H. C., "A new integrated waveguide-microstrip transition," IEEE Trans. Microwave Theory and Techniques, Vol. 24, 144-147, 1976.
doi:10.1109/TMTT.1976.1128796

11. Lv, W. J. and H. B. He, Concise Antenna Theory and Design Applications, Posts & Telecom Press, 2014.

12. Cui, Y. H., R. L. Li, and H. Z. Fu, "A broadband dual-polarized planar antenna for 2G/3G/LTE base stations," IEEE Trans. Antennas Propag., Vol. 62, No. 9, Part 2, 4836-4840, Sep. 2014.