PIER Letters
Progress In Electromagnetics Research Letters
ISSN: 1937-6480
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 58 > pp. 1-7


By G. Zhang, L. Sun, B.-H. Sun, J. Yuan, and J.-P. Zhao

Full Article PDF (632 KB)

A simple 2×3 reconfigurable beam-forming network (R-BFN) for four-beam reconfiguration application is designed and implemented. The proposed R-BFN with two input ports and three output ports consists of a 2:1 power divider, a 90° hybrid, a 180° hybrid and a 2-bit phase shifter. The 2-bit phase shifter has two states: one is a 180° phase shifter (State 1); the other is a 0°/360° phase shifter (State 2). By introducing the 2-bit phase shifter, the constant phase differences of three output ports can be reconfigured. Specifically, as different input ports are excited, the R-BFN provides three output signals with equal power levels and the progressive phases of -120° and 120° when the 2-bit phase shifter at state 1, while -60° and 60° when the 2-bit phase shifter at state 2, respectively. When the proposed R-BFN is connected to an antenna array, a four-beam reconfiguration is obtained. Simulated and measured results show that good impedance matching, high port isolation, equal power division, and constant phase difference have been achieved simultaneously within the operation band of 2.4-2.6 GHz. The capability of the proposed R-BFN to reconfigure beams is also verified experimentally by using a 2.5 GHz dipole array.

G. Zhang, L. Sun, B.-H. Sun, J. Yuan, and J.-P. Zhao, "A Simple 2×3 Beam-Forming Network with a 2-Bit Phase Shifter for Four-Beam Reconfiguration," Progress In Electromagnetics Research Letters, Vol. 58, 1-7, 2016.

1. Li, Z., D. Rodrigo, L. Jofre, and B. Cetiner, "A new class of antenna array with a reconfigurable element factor," IEEE Trans. Antennas Propag., Vol. 61, No. 4, 1947-1955, Apr. 2013.

2. Stutzman, W. L. and G. A. Thiele, Antenna Theory and Design, 2nd Ed., Wiley, New York, 1997.

3. Skolnik, M., Radar Handbook, 2nd Ed., McGraw-Hill, New York, 1990.

4. Parker, D. and D. C. Zimmerman, "Phased arrays - Part I: Theory and architectures," IEEE Trans. Microw. Theory Techn., Vol. 50, No. 3, 678-687, Mar. 2002.

5. Parker, D. and D. C. Zimmerman, "Phased arrays - Part II: Implementations, applications, future trends," IEEE Trans. Microw. Theory Techn., Vol. 50, No. 3, 688-698, Mar. 2002.

6. Butler, J. and R. Lowe, "Beam-forming matrix simplifies design of electronically scanned antennas," IEEE Trans. Electron. Devices, 170-173, 1961.

7. Xu, H.-X., G.-M. Wang, and X. Wang, "Compact Butler matrix using composite right/left handed transmission line," Electron. Lett., Vol. 47, No. 19, 1081-1082, Sep. 2011.

8. Nedil, M., T. A. Denidni, and L. Talbi, "Novel Butler matrix using CPW multilayer technology," IEEE Trans. Microw. Theory Techn., Vol. 54, No. 1, 499-507, Jan. 2006.

9. Tseng, C.-H., C.-J. Chen, and T.-H. Chu, "A low-cost 60-GHz switched-beam patch antenna array with Butler matrix network," IEEE Antennas Wireless Propag. Lett., Vol. 7, 432-435, 2008.

10. Blass, J., "Multi-directional antenna: New approach top stacked beams," IRE Int. Convention Record, 48-50, Pt. 1, 1960.

11. Chen, P., W. Hong, Z. Kuai, and J. Xu, "A double layer substrate integrated waveguide blass matrix for beamforming applications," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 6, 374-376, 2009.

12. Nolen, J., "Synthesis of multiple beam networks for arbitrary illuminations,", Ph.D. Dissertation, Bendix Corporation, Radio Division, Baltimore, MD, Apr. 1965.

13. Djerafi, T., N. J. G. Fonseca, and K. Wu, "Planar Ku-band 4×4 Nolen matrix in SIW technology," IEEE Trans. Microw. Theory Techn., Vol. 58, No. 2, 259-266, Feb. 2010.

14. Rappaport, T. D., Wireless Communication System, 2nd Ed., John Wiley & Sons Inc., 2001.

© Copyright 2010 EMW Publishing. All Rights Reserved