Vol. 58

Latest Volume
All Volumes
All Issues
2016-01-18

Hilbert Curve Fractal Antenna for Dual on- and off -Body Communication

By Susilo Ady Saputro and Jae-Young Chung
Progress In Electromagnetics Research Letters, Vol. 58, 81-88, 2016
doi:10.2528/PIERL15111107

Abstract

We present a Hilbert curve fractal antenna operating at 2.45 GHz ISM and 5.5 GHz WLAN bands. The proposed antenna employs a third-order Hilbert curve and two shorting vias for antenna miniaturization and dual-band/mode operation. At 2.45 GHz, the antenna exhibits a monopole-like radiation pattern, while at 5.5 GHz, it provides a broadside radiation pattern, suitable for simultaneous on- and off-body communication using two distinct frequency bands. The antenna foot print is as small as 25.5 mm×25.5 mm. Simulation and measurement results demonstrate that the antenna gain is more than 1.9 dBi if the antenna is mounted on a ground larger than 40 mm×40 mm. The effect of human body presence on antenna performance was investigated by means of full-wave simulations locating the antenna on a human body phantom. It is shown that the proposed antenna is capable of maintaining its free-space performance over the human body phantom except for the gain reduction of 2.5 dBi at 5.5 GHz band.

Citation


Susilo Ady Saputro and Jae-Young Chung, "Hilbert Curve Fractal Antenna for Dual on- and off -Body Communication," Progress In Electromagnetics Research Letters, Vol. 58, 81-88, 2016.
doi:10.2528/PIERL15111107
http://www.jpier.org/PIERL/pier.php?paper=15111107

References


    1. Cavallari, R., F. Martelli, R. Rosini, C. Buratti, and R. Verdone, "Survey on wireless body area networks: Technologies and design challenges," IEEE Comm. Surveys Tutor., Vol. 16, No. 3, 1635-1657, Third Quarter, 2014.
    doi:10.1109/SURV.2014.012214.00007

    2. Li, M., S. Q. Xiao, and B. Z. Wang, "Pattern-reconfigurable antenna for on-body communication," Proc. IMWS-BIO, 1-3, 2013.

    3. Scott, H. and V. F. Fusco, "Antenna array beam-steering by the integration of a series phase shifter," Proc. High Freq. Postgrad. Stu. Colloq., 25-29, 2001.
    doi:10.1109/HFPSC.2001.962154

    4. Yusuf, Y. and X. Gong, "Low-cost patch antenna phased array with analog beam steering using mutual coupling and reactive loading," IEEE Antennas Wirel. Propag. Lett., Vol. 7, 81-84, 2008.
    doi:10.1109/LAWP.2008.916689

    5. Lim, I. and S. Lim, "Monopole-like and boresight pattern reconfigurable antenna," IEEE Trans. Antennas Propag., Vol. 61, No. 12, 5854-5859, Dec. 2013.
    doi:10.1109/TAP.2013.2283926

    6. Lee, S. W. and Y. Sung, "A polarization diversity patch antenna with reconfigurable feeding network," J. Electromagn. Eng. Sci., Vol. 15, No. 2, 115-119, Apr. 2015.
    doi:10.5515/JKIEES.2015.15.2.115

    7. Nessel, J. A., A. J. Zaman, and F. A. Miranda, "A miniaturized antenna for surface-to-surface and surface-to-orbiter applications," Microw. Opt. Tech. Lett., Vol. 48, No. 5, 859-862, Mar. 2006.
    doi:10.1002/mop.21499

    8. Patel, M. and J. Wang, "Applications, challenges, and prospective in emerging body area networking technologies," IEEE Trans. Wirel. Commu., Vol. 17, No. 1, 80-88, Feb. 2010.
    doi:10.1109/MWC.2010.5416354

    9. Anguera, J., C. Puente, and J. Soler, "Miniature monopole antenna based on fractal Hilbert curve," Proc. IEEE Antennas Propag. - Soc. Int. Symp., Vol. 4, 546-549, 2002.
    doi:10.1109/APS.2002.1017043

    10. Vinoy, K. J., K. A. Jose, V. K. Varadan, and V. V. Varadan, "Resonant frequency of Hilbert curve fractal antennas," Proc. Antennas Propag. - Soc. Int. Symp., Vol. 3, 648-651, 2001.

    11. Azaro, R., F. Viani, L. Lizzi, E. Zeni, and A. Massa, "A monopolar quad-band antenna based on a Hilbert self-affine prefractal geometry," IEEE Antennas Wirel. Propag. Lett., Vol. 8, 177-180, 2009.
    doi:10.1109/LAWP.2008.2001428

    12. Sinha, S. N. and M. Jain, "A self-affine fractal multiband antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 6, 110-112, 2007.
    doi:10.1109/LAWP.2007.891519

    13. Mahatthanajatuphat, C., P. Akkaraekthalin, S. Saleekaw, and M. Krairiksh, "A bidirectional multiband antenna with modified fractal slot fed by CPW," Progress In Electromagnetics Research, Vol. 95, 59-72, 2009.
    doi:10.2528/PIER09061603

    14. Wang, Z., L. Z. Lee, D. Psychoudakis, and J. L. Volakis, "Embroidered multiband body-worn antenna for GSM/PCS/WLAN communications," IEEE Trans. Antennas Propag., Vol. 62, No. 6, 3321-3329, Jun. 2014.
    doi:10.1109/TAP.2014.2314311

    15. See, T. S. P. and Z. N. Chen, "Experimental characterization of UWB antennas for on-body communications," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 866-874, Apr. 2009.
    doi:10.1109/TAP.2009.2014595

    16. Christ, A., A. Klingenbock, T. Samaras, C. Goiceanu, and N. Kuster, "The dependence of electromagnetic far-field absorption on body tissue composition in the frequency range from 300MHz to 6 GHz," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 5, 2188-2195, May 2006.
    doi:10.1109/TMTT.2006.872789

    17. Inst. of Appl. Phys., "Calculation of the dielectric properties of body tissues in the frequency range 10 Hz-100 GHz,", Italian Nat. Res. Council, Florence, Italy, [Online] Available: http://niremf.ifac.cnr.it/tissprop/.

    18. Ryckaert, J., P. De Doncker, R. Meys, A. de Le Hoye, and S. Donnay, "Channel model for wireless communication around human body," IEEE Electron. Lett., Vol. 40, No. 9, 543-544, Apr. 2004.
    doi:10.1049/el:20040386

    19. Conway, G. A. and W. G. Scanlon, "Antennas for over-body-surface communication at 2.45 GHz," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 844-855, Apr. 2009.
    doi:10.1109/TAP.2009.2014525

    20. Hall, P. S., Y. Hao, Y. I. Nechayev, A. Alomainy, C. C. Constantinou, C. Parini, M. R. Kamarudin, T. Z. Salim, D. T.M. Hee, R. Dubrovka, A. S. Owadally, S.Wei, A. Serra, P. Nepa, M. Gallo, and M. Bozzetti, "Antennas and propagation for on-body communication systems," IEEE Antennas Propag. Mag., Vol. 49, No. 3, 41-58, Jun. 2007.
    doi:10.1109/MAP.2007.4293935