PIER Letters
 
Progress In Electromagnetics Research Letters
ISSN: 1937-6480
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 58 > pp. 81-88

HILBERT CURVE FRACTAL ANTENNA FOR DUAL ON- AND OFF-BODY COMMUNICATION

By S. A. Saputro and J.-Y. Chung

Full Article PDF (291 KB)

Abstract:
We present a Hilbert curve fractal antenna operating at 2.45 GHz ISM and 5.5 GHz WLAN bands. The proposed antenna employs a third-order Hilbert curve and two shorting vias for antenna miniaturization and dual-band/mode operation. At 2.45 GHz, the antenna exhibits a monopole-like radiation pattern, while at 5.5 GHz, it provides a broadside radiation pattern, suitable for simultaneous on- and off-body communication using two distinct frequency bands. The antenna foot print is as small as 25.5 mm×25.5 mm. Simulation and measurement results demonstrate that the antenna gain is more than 1.9 dBi if the antenna is mounted on a ground larger than 40 mm×40 mm. The effect of human body presence on antenna performance was investigated by means of full-wave simulations locating the antenna on a human body phantom. It is shown that the proposed antenna is capable of maintaining its free-space performance over the human body phantom except for the gain reduction of 2.5 dBi at 5.5 GHz band.

Citation:
S. A. Saputro and J.-Y. Chung, "Hilbert Curve Fractal Antenna for Dual on- and off -Body Communication," Progress In Electromagnetics Research Letters, Vol. 58, 81-88, 2016.
doi:10.2528/PIERL15111107

References:
1. Cavallari, R., F. Martelli, R. Rosini, C. Buratti, and R. Verdone, "Survey on wireless body area networks: Technologies and design challenges," IEEE Comm. Surveys Tutor., Vol. 16, No. 3, 1635-1657, Third Quarter, 2014.
doi:10.1109/SURV.2014.012214.00007

2. Li, M., S. Q. Xiao, and B. Z. Wang, "Pattern-reconfigurable antenna for on-body communication," Proc. IMWS-BIO, 1-3, 2013.

3. Scott, H. and V. F. Fusco, "Antenna array beam-steering by the integration of a series phase shifter," Proc. High Freq. Postgrad. Stu. Colloq., 25-29, 2001.
doi:10.1109/HFPSC.2001.962154

4. Yusuf, Y. and X. Gong, "Low-cost patch antenna phased array with analog beam steering using mutual coupling and reactive loading," IEEE Antennas Wirel. Propag. Lett., Vol. 7, 81-84, 2008.
doi:10.1109/LAWP.2008.916689

5. Lim, I. and S. Lim, "Monopole-like and boresight pattern reconfigurable antenna," IEEE Trans. Antennas Propag., Vol. 61, No. 12, 5854-5859, Dec. 2013.
doi:10.1109/TAP.2013.2283926

6. Lee, S. W. and Y. Sung, "A polarization diversity patch antenna with reconfigurable feeding network," J. Electromagn. Eng. Sci., Vol. 15, No. 2, 115-119, Apr. 2015.
doi:10.5515/JKIEES.2015.15.2.115

7. Nessel, J. A., A. J. Zaman, and F. A. Miranda, "A miniaturized antenna for surface-to-surface and surface-to-orbiter applications," Microw. Opt. Tech. Lett., Vol. 48, No. 5, 859-862, Mar. 2006.
doi:10.1002/mop.21499

8. Patel, M. and J. Wang, "Applications, challenges, and prospective in emerging body area networking technologies," IEEE Trans. Wirel. Commu., Vol. 17, No. 1, 80-88, Feb. 2010.
doi:10.1109/MWC.2010.5416354

9. Anguera, J., C. Puente, and J. Soler, "Miniature monopole antenna based on fractal Hilbert curve," Proc. IEEE Antennas Propag. - Soc. Int. Symp., Vol. 4, 546-549, 2002.
doi:10.1109/APS.2002.1017043

10. Vinoy, K. J., K. A. Jose, V. K. Varadan, and V. V. Varadan, "Resonant frequency of Hilbert curve fractal antennas," Proc. Antennas Propag. - Soc. Int. Symp., Vol. 3, 648-651, 2001.

11. Azaro, R., F. Viani, L. Lizzi, E. Zeni, and A. Massa, "A monopolar quad-band antenna based on a Hilbert self-affine prefractal geometry," IEEE Antennas Wirel. Propag. Lett., Vol. 8, 177-180, 2009.
doi:10.1109/LAWP.2008.2001428

12. Sinha, S. N. and M. Jain, "A self-affine fractal multiband antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 6, 110-112, 2007.
doi:10.1109/LAWP.2007.891519

13. Mahatthanajatuphat, C., P. Akkaraekthalin, S. Saleekaw, and M. Krairiksh, "A bidirectional multiband antenna with modified fractal slot fed by CPW," Progress In Electromagnetics Research, Vol. 95, 59-72, 2009.
doi:10.2528/PIER09061603

14. Wang, Z., L. Z. Lee, D. Psychoudakis, and J. L. Volakis, "Embroidered multiband body-worn antenna for GSM/PCS/WLAN communications," IEEE Trans. Antennas Propag., Vol. 62, No. 6, 3321-3329, Jun. 2014.
doi:10.1109/TAP.2014.2314311

15. See, T. S. P. and Z. N. Chen, "Experimental characterization of UWB antennas for on-body communications," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 866-874, Apr. 2009.
doi:10.1109/TAP.2009.2014595

16. Christ, A., A. Klingenbock, T. Samaras, C. Goiceanu, and N. Kuster, "The dependence of electromagnetic far-field absorption on body tissue composition in the frequency range from 300MHz to 6 GHz," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 5, 2188-2195, May 2006.
doi:10.1109/TMTT.2006.872789

17. Inst. of Appl. Phys., "Calculation of the dielectric properties of body tissues in the frequency range 10 Hz-100 GHz,", Italian Nat. Res. Council, Florence, Italy, [Online] Available: http://niremf.ifac.cnr.it/tissprop/.

18. Ryckaert, J., P. De Doncker, R. Meys, A. de Le Hoye, and S. Donnay, "Channel model for wireless communication around human body," IEEE Electron. Lett., Vol. 40, No. 9, 543-544, Apr. 2004.
doi:10.1049/el:20040386

19. Conway, G. A. and W. G. Scanlon, "Antennas for over-body-surface communication at 2.45 GHz," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 844-855, Apr. 2009.
doi:10.1109/TAP.2009.2014525

20. Hall, P. S., Y. Hao, Y. I. Nechayev, A. Alomainy, C. C. Constantinou, C. Parini, M. R. Kamarudin, T. Z. Salim, D. T.M. Hee, R. Dubrovka, A. S. Owadally, S.Wei, A. Serra, P. Nepa, M. Gallo, and M. Bozzetti, "Antennas and propagation for on-body communication systems," IEEE Antennas Propag. Mag., Vol. 49, No. 3, 41-58, Jun. 2007.
doi:10.1109/MAP.2007.4293935


© Copyright 2010 EMW Publishing. All Rights Reserved