Vol. 58

Latest Volume
All Volumes
All Issues
2016-01-29

A New Method for Designing Low RCS Patch Antenna Using Frequency Selective Surface

By Jun Zheng and Shao-Jun Fang
Progress In Electromagnetics Research Letters, Vol. 58, 125-131, 2016
doi:10.2528/PIERL15122702

Abstract

A new method for reducing the in-band radar cross-section (RCS) of a patch antenna within its operating frequency is presented. This method is based on the utilization of band-pass frequency selective surface (FSS) consisting of non-resonant constituting elements. The main novelty of this method is that it allows for the use of an FSS structure to reducing the in-band RCS of antennas. To validate the proposed method, a low RCS patch antenna resonating at 5 GHz is designed using this method. The simulated results show that the largest RCS reduction is about 15 dB at 5 GHz. A prototype of the proposed antenna is fabricated and tested in an anechoic chamber, and good agreements between the measured and simulated results are demonstrated.

Citation


Jun Zheng and Shao-Jun Fang, "A New Method for Designing Low RCS Patch Antenna Using Frequency Selective Surface," Progress In Electromagnetics Research Letters, Vol. 58, 125-131, 2016.
doi:10.2528/PIERL15122702
http://www.jpier.org/PIERL/pier.php?paper=15122702

References


    1. Jenn, D. C., "Radar and laser cross section engineering,", American Institute of Aeronautics and Astronautics, 2005.
    doi:10.1049/sbra026e

    2. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, SciTech Pub., Raleigh, NC, USA, 2004.
    doi:10.1002/0471723770

    3. Munk, B. A., Frequency Selective Surface, Theory and Design, Wiley, New York, NY, USA, 2000.

    4. Munk, B. A., Finite Antenna Arrays and FSS, John Wiley and Sons, Inc., 2005.
    doi:10.1109/TAP.2012.2189701

    5. Genovesi, S., F. Costa, and A. Monorchio, "Low-profile array with reduced radar cross section by using hybrid frequency selective surface," IEEE Trans. Antennas Propag., Vol. 60, No. 5, 2327-2335, 2012.
    doi:10.1163/156939309789476473

    6. Wang, W.-T., S.-X. Gong, X. Wang, H.-W. Yuan, J. Ling, and T.-T. Wan, "RCS reduction of array antenna by using bandstop FSS reflector," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1505-1514, 2009.
    doi:10.1049/el:20051239

    7. Gao, Q., Y. Yin, D.-B. Yan, and N.-C. Yuan, "Application of metamaterials to ultra-thin radar absorbing materials design," Electron. Lett., Vol. 41, No. 17, 936-937, 2005.

    8. Li, Y., H. Zhang, Y. Fu, and N. Yuan, "RCS reduction of ridged wave-guide slot antenna array using EBG radar absorbing material," IEEE Antennas Wireless Propag. Lett., Vol. 7, 473-476, 2008.
    doi:10.1109/TAP.2013.2287888

    9. Genovesi, S., F. Costa, and A. Monorchio, "Wideband radar cross section reduction of slot antennas arrays," IEEE Trans. Antennas Propag., Vol. 62, No. 1, 163-173, 2014.

    10. Xu, H. Y., H. Zhang, K. Lu, and X.-F. Zeng, "A holly-leaf-shaped monopole antenna with low RCS for UWB application," Progress In Electromagnetics Research, Vol. 117, 35-50, 2011.
    doi:10.2528/PIERL12112011

    11. Jia, Y., Y. Liu, S.-X. Gong, T. Hong, and D. Yu, "Printed UWB end-fire Vivaldi antenna with low RCS," Progress In Electromagnetics Research Letters, Vol. 37, 11-20, 2013.
    doi:10.1109/TAP.2014.2313855

    12. Dikmen, C. M., S. Cimen, and G. Cakir, "Planar octagonal-shaped UWB antenna with reduced radar cross section," IEEE Trans. Antennas Propag., Vol. 62, No. 6, 2946-2953, 2014.
    doi:10.1002/mop.22440

    13. He, W., R. Jin, J. Geng, and G. Yang, "2 × 2 array with UC-EBG ground for low RCS and high gain," Microw. Opt. Technol. Lett., Vol. 49, No. 6, 1418-1422, 2007.
    doi:10.1109/LAWP.2012.2215832

    14. Zhang, J., J. Wang, M. Chen, and Z. Zhang, "RCS reduction of patch array antenna by electromagnetic band-gap structure," IEEE Antennas Wireless Propag. Lett., Vol. 11, 1048-1051, 2012.
    doi:10.1109/TAP.2004.840528

    15. Feresidis, A. P., G. Goussetis, S. Wang, and J. C. Vardaxoglou, "Artificial magnetic conductor surface and their application to low-profile high-gain planar antennas," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 209-215, 2005.
    doi:10.1109/TAP.2008.2005538

    16. Weily, A. R., T. S. Brid, and Y. J. Guo, "A reconfigurable high-gain partially reflecting surface antenna," IEEE Trans. Antennas Propag., Vol. 56, No. 11, 3382-3390, 2008.

    17. Al-Joumayly, M. A. and N. Behdad, "A generalized method for synthesizing low-profile band-pass frequency selective surface with non-resonant constituting elements," IEEE Trans. Antennas Propag., Vol. 58, No. 12, 2946-2953, 2010.

    18. Liu, Y. and X. Zhao, "Perfect absorber metamaterial for designing low-RCS patch antenna," IEEE Antennas Wireless Propag. Lett., Vol. 13, 1473-1476, 2014.
    doi:10.1109/LAWP.2014.2357017

    19. Xu, W., J. Wang, M. Chen, Z. Zhang, and Z. Li, "A novel microstrip antenna with composite patch structure for reduction of in-band RCS," IEEE Antennas Wireless Propag. Lett., Vol. 14, 139-142, 2015.

    20. Krishnamoorthy, K., B. Majumder, J. Mukherjee, and K. P. Ray, "Low RCS and polarization reconfigurable antenna using cross slot based metasurface," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1638-1641, 2015.