PIER Letters
Progress In Electromagnetics Research Letters
ISSN: 1937-6480
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 59 > pp. 63-69


By L. Li, Y. Yu, and L. Yi

Full Article PDF (1,448 KB)

A new defected ground structure (DGS) is designed to reduce the mutual coupling of a dual-frequency printed monopole array. The designed dual-frequency DGS consists of two concentric split ring slots. Each split ring slot produces band rejection characteristics at one resonant frequency of the antennas. An effective equivalent circuit model of the DGS section is proposed with the circuit parameters successfully extracted. Good agreement exists among the circuit simulation, EM simulation and experimental results. With the inclusion of the DGS, the measured mutual coupling of the dual-band array has been effectively reduced by 10 dB and 20 dB at two resonant frequencies, respectively.

L. Li, Y. Yu, and L. Yi, "Mutual Coupling Reduction Between Printed Dual-Frequency Antenna Arrays," Progress In Electromagnetics Research Letters, Vol. 59, 63-69, 2016.

1. Dossche, S., S. Blanch, and J. Romeu, "Optimum antenna matching to minimize signals correlation on a two-port antenna diversity system," Electronics Lett., Vol. 40, No. 19, 1164-1165, 2004.

2. Hong, T. and Y. Yu, "A compact monopole array with increased port isolation," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 8/9, 1213-1220, 2011.

3. Lee, T.-I. and Y. Wang, "Mode-based information channels in closely coupled dipole pairs," IEEE Trans. Antennas Propag., Vol. 56, No. 12, 3804-3804, 2008.

4. Coetzee, J. C. and Y. Yu, "Port decoupling for small arrays by means of an eigenmode feed network," IEEE Trans. Antennas Propag., Vol. 56, No. 6, 1587-1593, 2008.

5. Lui, H.-S. and H. T. Hui, "Effective mutual coupling compensation for direction-of-arrival estimations using a new, accurate determination method for the receiving mutual impedance," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 2/3, 271-281, 2010.

6. Lui, H. S. and H. T. Hui, "Mutual coupling compensation for direction-of-arrival estimations using the receiving-mutual-impedance method," International Journal of Antennas and Propagation, March 2010.

7. Lui, H.-S., H. T. Hui, and M. S. Leong, "A note on the mutual coupling problems in transmitting and receiving antenna array," IEEE Antennas and Propagations Magazine, Vol. 51, No. 5, 171-176, 2009.

8. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2936-2946, 2003.

9. Kim, C.-S., J.-S. Lim, S. Nam, K.-Y. Kang, and D. Ahn, "Equivalent circuit modeling of spiral defected ground structure for microstrip line," Electron. Lett., Vol. 38, 1109-1111, 2002.

10. Jiang, Y., Y. Yu, M. Yuan, and L. Wu, "A compact printed monopole array with defected ground structure to reduce the mutual coupling," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 14/15, 1963-1974, 2011.

11. Bait-Suwailam, M. M., O. F. Siddiqui, and O. M. Ramahi, "Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators," IEEE Antennas Wireless Propag. Lett., Vol. 9, 876-878, 2010.

12. Lin, K.-C., C.-H. Wu, C.-H. Lai, and T.-G. Ma, "Novel dual-band decoupling network for two-element closely spaced array using synthesized microstrip lines," IEEE Trans. Antennas Propag., Vol. 60, No. 11, 5118-5128, 2012.

13. Sharawi, M. S., A. B. Numan, M. U. Khan, and D. N. Aloi, "A dual-element dual-band MIMO antenna system with enhanced isolation for mobile terminals," IEEE Antennas Wireless Propag. Lett., Vol. 11, 1006-1009, 2012.

14. Caloz, C., H. Okabe, T. Iwai, and T. Itoh, "A simple and accurate model for microstrip structures with slotted ground plane," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 3, 127-129, 2004.

15. Gupta, K. C., R. Garg, I. Bahl, and P. Bhartia, Microstrip lines and Slotlines, 2nd Ed., Artech House, Norwood, NJ, 1996.

16. Ahn, D., J.-S. Park, C.-S. Kim, J. Kim, Y. Qian, and T. Itoh, "A design of the low-pass filter using the novel microstrip defected ground structure," IEEE Trans. Microwave Theory Techniques, Vol. 49, No. 1, 86-93, 2001.

17. Pozar, D. M., Microwave Engineering, 3rd Ed., Wiley, Hoboken, NJ, 2005.

18. Axelrod, A., M. Kisliuk, and J. Maoz, "Broadband microstip-fed slot radiator," Microwave Journal, Vol. 32, 81-94, 1989.

19. Wu, H.-W., M.-H. Weng, Y.-K. Su, R.-Y. Yang, and C.-S. Ye, "An effective equivalent circuit model of slotted ground structures under planar microstrip," Microwave and Optical Technology Letters, Vol. 50, No. 10, 2651-2653, 2008.

© Copyright 2010 EMW Publishing. All Rights Reserved