PIER Letters
 
Progress In Electromagnetics Research Letters
ISSN: 1937-6480
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 60 > pp. 133-140

ELECTROMAGNETIC FORCE ON ANISOTROPIC-CONDUCTING FILM

By D. Xia

Full Article PDF (183 KB)

Abstract:
Electromechanical interaction between slow electromagnetic wave and anisotropic-conducting film is investigated. The physical effects associated with anisotropic-conducting film are revealed by electromagnetic theory and validated by experiment, and they have established the working principles for a class of electromechanical sensors and/or actuators, which have continuously moving part, and are sensitive to the amplitude and the direction of electromagnetic forces or fields and well able to reflect the resonance characteristics. The revealed and validated physical effects may have significance in quite different science and engineering fields and in wide frequency bands from RF to optics.

Citation:
D. Xia, "Electromagnetic Force on Anisotropic-Conducting Film," Progress In Electromagnetics Research Letters, Vol. 60, 133-140, 2016.
doi:10.2528/PIERL16040202

References:
1. Santos, H. J. D. L. and R. J. Richards, "MEMS for RF microwave wireless applications: The next wave — Part II," Microwave J., Vol. 44, No. 7, 41-47, 2001.

2. Lucyszyn, S., "Review of radio frequency microelectromechanical systems technology," IEE Proc. Sci. Meas. Technol., Vol. 151, No. 2, 93-103, 2004.
doi:10.1049/ip-smt:20040405

3. Pothier, A., J. C. Orlianges, G. Z. Zheng, C. Champeaux, A. Catherinot, D. Cros, P. Blondy, and J. Papapolymerou, "Low-loss 2-bit tunable bandpass filters using MEMS DC contact switches," IEEE Trans. Microw. Theory Techn., Vol. 53, No. 1, 354-360, 2005.
doi:10.1109/TMTT.2004.839935

4. Liu, C., "Recent developments in polymer MEMS," Adv. Mater., Vol. 19, No. 22, 3783-3790, 2007.
doi:10.1002/adma.200701709

5. Entesari, K., K. Obeidat, A. R. Brown, and G. M. Rebeiz, "A 25-75-MHz RF MEMS tunable filter," IEEE Trans. Microw. Theory Techn., Vol. 55, No. 11, 2399-2405, 2007.
doi:10.1109/TMTT.2007.908674

6. Lopez, J. L., J. Verd, A. Uranga, J. Giner, G. Murillo, F. Torres, G. Abadal, and N. Barniol, "A CMOS-MEMS RF-tunable bandpass filter based on two high-22-MHz polysilicon clamped-clamped beam resonators," IEEE Electr. Device Lett., Vol. 30, No. 7, 718-720, 2009.
doi:10.1109/LED.2009.2022509

7. Jaafar, H., F. L. Nan, and N. A. M. Yunus, "Design and simulation of high performance RF MEMS series switch," IEEE Regional Symposium on Micro and Nanoelectronics (RSM), 349-353, Kota Kinabalu, Malaysia, September 2011.

8. Stamper, A. K., C. V. Jahnes, S. R. Dupuis, A. Gupta, Z. X. He, R. T. Herrin, S. E. Luce, J. Maling, D. R. Miga, W. J. Murphy, E. J. White, S. J. Cunningham, D. R. De Reus, I. Vitomirov, and A. S. Morris, "Planar MEMS RF capacitor integration," 16th International Solid-State Sensors, Actuators and Microsystems Conference (Transducers), 1803-1806, Beijing, China, June 2011.

9. Stockman, H. E., "Parametric oscillatory and rotary motion," Proc. Inst. Radio Engrs. Correspondence), Vol. 48, 1157-1158, 1960.

10. Garnier, R. C. and K. Ishii, "Microwave motor," Proc. Inst. Radio Engrs. (Correspondence), Vol. 52, 1380-1381, 1964.
doi:10.1109/PROC.1964.3406

11. Steinhoff, R. W. and T. K. Ishii, "Pickup antenna for waveguide motors," IEEE Trans. Microw. Theory Techn. (Correspondence), Vol. 14, No. 9, 438, 1966.
doi:10.1109/TMTT.1966.1126295

12. Larson, L. E., R. H. Hackett, M. A. Melendes, and R. F. Lohr, "Micromachined microwave actuator (MIMAC) technology-a new tuning approach for microwave integrated circuits," IEEE Microwave & Millimeter-wave Monolithic Circuits Symposium, 27-30, Boston, MA, USA, June 1991.

13. Krylov, S., I. Harari, and Y. Cohen, "Stabilization of electrostatically actuated microstructures using parametric excitation," J. Micromech. Microeng., Vol. 15, No. 6, 1188-1204, 2005.
doi:10.1088/0960-1317/15/6/009

14. Zhao, X., C. K. Reddy, and A. H. Nayfeh, "Nonlinear dynamics of an electrically driven impact microactuator," Nonlinear Dynamics, Vol. 40, No. 3, 227-239, 2005.
doi:10.1007/s11071-005-6467-8

15. Ashkin, A., "History of optical trapping and manipulation of small-neutral particle, atom, and molecules," IEEE J. Sel. Top. Quantum Electron., Vol. 6, No. 6, 841-856, 2000.
doi:10.1109/2944.902132

16. Higurashi, E., O. Ohguchi, T. Tamamura, H. Ukita, and R. Sawada, "Optically induced rotation of dissymmetrically shaped fluorinated polyimide micro-objects in optical traps," J. Appl. Phys., Vol. 82, No. 6, 2773-2779, 1997.
doi:10.1063/1.366163

17. Mizrahi, A., M. Horowitz, and L. Schachter, "Torque and longitudinal force exerted by eigenmodes on circular waveguides ," Phys. Rev. A, Vol. 78, No. 2, 0238021-6, 2008.
doi:10.1103/PhysRevA.78.023802

18. Xia, D. and T. L. Dong, "Reflection and transmission of electromagnetic slow-waves by a uniformly moving dielectric slab," Chinese Sci. Bull., Vol. 55, No. 34, 3875-3879, 2010.
doi:10.1007/s11434-010-4196-y

19. Kong, J. A., Electromagnetic Wave Theory, EMW Publishing, Cambridge, MA, USA, 2005.

20. Braginsky, V. B. and A. B. Manukin, Measurement of Weak Forces in Physics Experiments, University of Chicago Press, Pasadena, Chicago, CA, USA, 1977.

21. Gunel, T., "A genetic approach to the synthesis of composite right/left-handed transmission line impedance matching sections," Int. J. Electron. Commun. (AEU), Vol. 61, No. 7, 459-462, 2007.
doi:10.1016/j.aeue.2006.07.006

22. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: The Engineering Approach, John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 2006.

23. Xia, D., R. X. Yao, P. Li, G. Feng, and T. L. Dong, "Measurement of transition frequency of composite transmission line model," Asia-Pacific Power & Energy Engineering Conference (APPEEC), 1-2, Wuhan, China, March 2011.
doi:10.1109/APPEEC.2011.5748615


© Copyright 2010 EMW Publishing. All Rights Reserved