Vol. 60
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-06-23
Electromagnetic Force on Anisotropic-Conducting Film
By
Progress In Electromagnetics Research Letters, Vol. 60, 133-140, 2016
Abstract
Electromechanical interaction between slow electromagnetic wave and anisotropic-conducting film is investigated. The physical effects associated with anisotropic-conducting film are revealed by electromagnetic theory and validated by experiment, and they have established the working principles for a class of electromechanical sensors and/or actuators, which have continuously moving part, and are sensitive to the amplitude and the direction of electromagnetic forces or fields and well able to reflect the resonance characteristics. The revealed and validated physical effects may have significance in quite different science and engineering fields and in wide frequency bands from RF to optics.
Citation
Dan Xia, "Electromagnetic Force on Anisotropic-Conducting Film," Progress In Electromagnetics Research Letters, Vol. 60, 133-140, 2016.
doi:10.2528/PIERL16040202
References

1. Santos, H. J. D. L. and R. J. Richards, "MEMS for RF microwave wireless applications: The next wave — Part II," Microwave J., Vol. 44, No. 7, 41-47, 2001.

2. Lucyszyn, S., "Review of radio frequency microelectromechanical systems technology," IEE Proc. Sci. Meas. Technol., Vol. 151, No. 2, 93-103, 2004.
doi:10.1049/ip-smt:20040405

3. Pothier, A., J. C. Orlianges, G. Z. Zheng, C. Champeaux, A. Catherinot, D. Cros, P. Blondy, and J. Papapolymerou, "Low-loss 2-bit tunable bandpass filters using MEMS DC contact switches," IEEE Trans. Microw. Theory Techn., Vol. 53, No. 1, 354-360, 2005.
doi:10.1109/TMTT.2004.839935

4. Liu, C., "Recent developments in polymer MEMS," Adv. Mater., Vol. 19, No. 22, 3783-3790, 2007.
doi:10.1002/adma.200701709

5. Entesari, K., K. Obeidat, A. R. Brown, and G. M. Rebeiz, "A 25-75-MHz RF MEMS tunable filter," IEEE Trans. Microw. Theory Techn., Vol. 55, No. 11, 2399-2405, 2007.
doi:10.1109/TMTT.2007.908674

6. Lopez, J. L., J. Verd, A. Uranga, J. Giner, G. Murillo, F. Torres, G. Abadal, and N. Barniol, "A CMOS-MEMS RF-tunable bandpass filter based on two high-22-MHz polysilicon clamped-clamped beam resonators," IEEE Electr. Device Lett., Vol. 30, No. 7, 718-720, 2009.
doi:10.1109/LED.2009.2022509

7. Jaafar, H., F. L. Nan, and N. A. M. Yunus, "Design and simulation of high performance RF MEMS series switch," IEEE Regional Symposium on Micro and Nanoelectronics (RSM), 349-353, Kota Kinabalu, Malaysia, September 2011.

8. Stamper, A. K., C. V. Jahnes, S. R. Dupuis, A. Gupta, Z. X. He, R. T. Herrin, S. E. Luce, J. Maling, D. R. Miga, W. J. Murphy, E. J. White, S. J. Cunningham, D. R. De Reus, I. Vitomirov, and A. S. Morris, "Planar MEMS RF capacitor integration," 16th International Solid-State Sensors, Actuators and Microsystems Conference (Transducers), 1803-1806, Beijing, China, June 2011.

9. Stockman, H. E., "Parametric oscillatory and rotary motion," Proc. Inst. Radio Engrs. Correspondence), Vol. 48, 1157-1158, 1960.

10. Garnier, R. C. and K. Ishii, "Microwave motor," Proc. Inst. Radio Engrs. (Correspondence), Vol. 52, 1380-1381, 1964.
doi:10.1109/PROC.1964.3406

11. Steinhoff, R. W. and T. K. Ishii, "Pickup antenna for waveguide motors," IEEE Trans. Microw. Theory Techn. (Correspondence), Vol. 14, No. 9, 438, 1966.
doi:10.1109/TMTT.1966.1126295

12. Larson, L. E., R. H. Hackett, M. A. Melendes, and R. F. Lohr, "Micromachined microwave actuator (MIMAC) technology-a new tuning approach for microwave integrated circuits," IEEE Microwave & Millimeter-wave Monolithic Circuits Symposium, 27-30, Boston, MA, USA, June 1991.

13. Krylov, S., I. Harari, and Y. Cohen, "Stabilization of electrostatically actuated microstructures using parametric excitation," J. Micromech. Microeng., Vol. 15, No. 6, 1188-1204, 2005.
doi:10.1088/0960-1317/15/6/009

14. Zhao, X., C. K. Reddy, and A. H. Nayfeh, "Nonlinear dynamics of an electrically driven impact microactuator," Nonlinear Dynamics, Vol. 40, No. 3, 227-239, 2005.
doi:10.1007/s11071-005-6467-8

15. Ashkin, A., "History of optical trapping and manipulation of small-neutral particle, atom, and molecules," IEEE J. Sel. Top. Quantum Electron., Vol. 6, No. 6, 841-856, 2000.
doi:10.1109/2944.902132

16. Higurashi, E., O. Ohguchi, T. Tamamura, H. Ukita, and R. Sawada, "Optically induced rotation of dissymmetrically shaped fluorinated polyimide micro-objects in optical traps," J. Appl. Phys., Vol. 82, No. 6, 2773-2779, 1997.
doi:10.1063/1.366163

17. Mizrahi, A., M. Horowitz, and L. Schachter, "Torque and longitudinal force exerted by eigenmodes on circular waveguides ," Phys. Rev. A, Vol. 78, No. 2, 0238021-6, 2008.
doi:10.1103/PhysRevA.78.023802

18. Xia, D. and T. L. Dong, "Reflection and transmission of electromagnetic slow-waves by a uniformly moving dielectric slab," Chinese Sci. Bull., Vol. 55, No. 34, 3875-3879, 2010.
doi:10.1007/s11434-010-4196-y

19. Kong, J. A., Electromagnetic Wave Theory, EMW Publishing, Cambridge, MA, USA, 2005.

20. Braginsky, V. B. and A. B. Manukin, Measurement of Weak Forces in Physics Experiments, University of Chicago Press, Pasadena, Chicago, CA, USA, 1977.

21. Gunel, T., "A genetic approach to the synthesis of composite right/left-handed transmission line impedance matching sections," Int. J. Electron. Commun. (AEU), Vol. 61, No. 7, 459-462, 2007.
doi:10.1016/j.aeue.2006.07.006

22. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: The Engineering Approach, John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 2006.

23. Xia, D., R. X. Yao, P. Li, G. Feng, and T. L. Dong, "Measurement of transition frequency of composite transmission line model," Asia-Pacific Power & Energy Engineering Conference (APPEEC), 1-2, Wuhan, China, March 2011.
doi:10.1109/APPEEC.2011.5748615