Vol. 63
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-11-11
Study on Attitude Control Method for Zero-Doppler Steering in Space Borne SAR System
By
Progress In Electromagnetics Research Letters, Vol. 63, 135-141, 2016
Abstract
For the spaceborne synthetic aperture radar (SAR) system, in order to alleviate the complexity of the imaging algorithm and to improve the accuracy of the applications of SAR images, attitude steering is required to reduce the Doppler centroid to 0 Hz. In published literature, two-dimensional attitude steering, including yaw and pitch steering, is employed for elliptic orbiting SAR systems. This paper proposes a new steering approach involving only yaw steering to suppress the Doppler centroid of the mid-range to theoretically 0 Hz with a low residual Doppler centroid at the edge of the range extent. This may reduce the complexity of the attitude control system. The comparison of the performances of the current applied methods and the proposed approach is carried out with a simulation, and the effectiveness of the new approach is validated by the results.
Citation
Xinqiang Zhao, and Dan Wei, "Study on Attitude Control Method for Zero-Doppler Steering in Space Borne SAR System," Progress In Electromagnetics Research Letters, Vol. 63, 135-141, 2016.
doi:10.2528/PIERL16062102
References

1. Raney, R. K., "Doppler properties of radars in circular orbits," International Journal of Remote Sensing, Vol. 7, 1153-1162, 1986.
doi:10.1080/01431168608948916

2. Cumming, I. G. and F. H. C. Wong, Digital Processing Of Synthetic Aperture Radar Data: Algorithms and Implementation, Artech House, 2005.

3. Runge, H., "Benefits of antenna yaw steering for SAR," IGARSS’91, 257-261, 1991.

4. Just, D. and B. Schattler, "Doppler-characteristics of the ERS-1 yaw steering mode," International Geoscience and Remote Sensing Symposium, 1992, IGARSS’92, 1349-1352, 1992.
doi:10.1109/IGARSS.1992.578450

5. Fiedler, H., E. Boerner, J. Mittermayer, and G. Krieger, "Total zero doppler steering --- A new method for minimizing the doppler centroid," IEEE Geoscience and Remote Sensing Letters, Vol. 2, 141-145, 2005.
doi:10.1109/LGRS.2005.844591

6. Yu, Z., Y. Zhou, J. Chen, et al. "A new satellite attitude steering approach for zero Doppler centroid," IET International Radar Conference 2009, 593-593, 2009.

7. Long, T., X. Dong, C. Hu, and T. Zeng, "A new method of zero-doppler centroid control in GEO SAR," IEEE Geoscience and Remote Sensing Letters, Vol. 8, 512-516, 2011.
doi:10.1109/LGRS.2010.2089969

8. Scharf, D. P., "Analytic Yaw&-Pitch steering for side-looking SAR with numerical roll algorithm for incidence angle," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, 3587-3594, 2012.
doi:10.1109/TGRS.2012.2183375

9. Fiedler, H., E. Boerner, J. Mittermayer, and G. Krieger, "Total zero doppler steering --- A new method for minimizing the doppler centroid," IEEE Geoscience and Remote Sensing Letters, Vol. 2, 141-145, 2005.
doi:10.1109/LGRS.2005.844591

10. Fiedler, H., T. Fritz, and R. Kahle, "Verification of the total zero Doppler steering," 2008 International Conference on Radar, 340-342, 2008.
doi:10.1109/RADAR.2008.4653943

11. Elkoteshy, Y., Y. Shuyuan, and F. Abdelkader, "Attitude error cancellation for strip-map SAR by controlling steering angles of the antenna platform," 2014 11th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 1-6, 2014.
doi:10.1109/ECTICon.2014.6839782

12. Morabito, A. F., T. Isernia, and D. L. Di, "Optimal synthesis of phase-only reconfigurable linear sparse arrays having uniform-amplitude excitations," Progress In Electromagnetics Research, Vol. 124, 405-423, 2012.
doi:10.2528/PIER11112210

13. Zhao, B., X. Qi, H. Song, et al. "An accurate range model based on the fourth-order doppler parameters for geosynchronous SAR," IEEE Geoscience and Remote Sensing Letters, Vol. 11, 205-209, 2014.
doi:10.1109/LGRS.2013.2252878