Vol. 65
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-01-21
Miniaturization and Bandwidth Enhancement of a CPW-Fed Annular Slot Antenna Using RIS
By
Progress In Electromagnetics Research Letters, Vol. 65, 109-116, 2017
Abstract
In this paper a CPW-fed annular slot antenna is miniaturized with enhanced impedance bandwidth using a reactive impedance surface (RIS) substrate. Such meta-surface (RIS) is realized by patterning 3×3 array of circular elements over an inexpensive FR-4 substrate which is backed by a circular metallic plane. Due to the compensation of electric and magnetic energy stored by antenna and RIS substrate respectively, the antenna resonance frequency is shifted by 53.6% compared with a simple slot antenna. By the inclusion of such reactive surface, input impedance of the antenna is reduced, and a remarkable improvement in impedance bandwidth from 11.66% to 64.26% is also noticed. Therefore, both miniaturization and bandwidth enhancement are achieved simultaneously with the present loading technique. The directivity of the RIS loaded antenna is increased further by loading a concentric metallic ring over the RIS loaded structure at a height above the RIS plane. The Ring & RIS loaded structure is fabricated for measurement purpose. A good agreement is obtained between the simulated and measured results for both RIS loaded and Ring & RIS loaded configurations. The ring loading over the RIS antenna provides improvement in directivity about 5 dB. The peak gain and bandwidth are measured as -1.03 dBi and 58.62%, respectively.
Citation
Gopinath Samanta, Debasis Mitra, and Sekhar Ranjan Bhadra Chaudhuri, "Miniaturization and Bandwidth Enhancement of a CPW-Fed Annular Slot Antenna Using RIS," Progress In Electromagnetics Research Letters, Vol. 65, 109-116, 2017.
doi:10.2528/PIERL16112206
References

1. Azadegan, R. and K. Sarabandi, "A novel approach for miniaturization of slot antennas," IEEE Trans. Antennas Propag., Vol. 51, No. 3, 421-429, Mar. 2003.
doi:10.1109/TAP.2003.809853

2. Ghosh, B., S. K. M. Haque, and D. Mitra, "Miniaturization of slot antennas using slit and strip loading," IEEE Trans. Antennas Propag., Vol. 59, No. 10, 3922-3928, Oct. 2011.
doi:10.1109/TAP.2011.2163754

3. Ghosh, B., S. K. M. Haque, and N. R. Yendruri, "Miniaturization of slot antenna using wire loading," IEEE Antennas and Wireless Propag. Lett., Vol. 12, 488-491, 2013.
doi:10.1109/LAWP.2013.2255857

4. Sun, L., B.-H. Sun, Q. Sun, and W. Huang, "Miniaturized annular ring slot antenna for small/mini UAV applications," Progress In Electromagnetics Research C, Vol. 54, 1-7, Oct. 2014.

5. Azadegan, R. and K. Sarabandi, "Bandwidth enhancement of miniaturized slot antennas using folded, complementary and self-complementary realizations," IEEE Trans. Antennas Propag., Vol. 55, No. 9, 2435-2444, Sep. 2007.
doi:10.1109/TAP.2007.904086

6. Abbosh, M. A., "Miniaturized microstrip-fed tapered-slot antenna with ultrawide band performance," IEEE Antennas and Wireless Propag. Lett., Vol. 8, 690-692, 2009.
doi:10.1109/LAWP.2009.2025613

7. Kikuta, K. and A. Hirose, "Compact folded-fin tapered slot antenna for UWB applications," IEEE Antennas and Wireless Propag. Lett., Vol. 14, 1192-1195, 2015.
doi:10.1109/LAWP.2015.2397008

8. Gong, B., X. S. Ren, Y. Y. Zeng, L. H. Su, and Q. R. Zheng, "Compact slot antenna for ultra-wide band applications," IET Microwave, Antennas and Propag., Vol. 8, No. 3, 200-205, 2014.
doi:10.1049/iet-map.2013.0067

9. Gao, G.-P., B. Hu, and J.-S. Zhang, "Design of a miniaturized printed circular-slot UWB antenna by half-cutting method," IEEE Antennas and Wireless Propag. Lett., Vol. 12, 567-570, 2013.
doi:10.1109/LAWP.2013.2259790

10. Sze, J.-Y. and K.-L. Wong, "Bandwidth enhancement of a microstrip-line-fed printed wide slot antenna," IEEE Trans. Antennas Propag., Vol. 49, No. 49, 1020-1024, Jul. 2001.

11. Mitra, D., D. Das, and S. R. Bhadra Chaudhuri, "Bandwidth enhancement of microstrip line and CPW-fed asymmetrical slot antennas," Progress In Electromagnetics Research C, Vol. 32, 69-79, Jun. 2012.
doi:10.2528/PIERL12032204

12. Jan, J.-Y. and J.-W. Su, "Bandwidth enhancement of a printed slot antenna with a rotated slot," IEEE Trans. Antennas Propag., Vol. 53, No. 6, 2111-2114, Jun. 2005.
doi:10.1109/TAP.2005.848518

13. Pan, G., Y. Li, Z. Zhang, and Z. Feng, "A compact slot-loop hybrid antenna with a monopole feed," IEEE Trans. Antennas Propag., Vol. 62, No. 7, 3864-3868, Jul. 2014.
doi:10.1109/TAP.2014.2320535

14. Fan, S. T., Y. Z. Yin, B. Lee, W. Hu, and X. Yang, "Bandwidth enhancement of a printed slot antenna with a pair of parasitic patches," IEEE Antennas and Wireless Propag. Lett., Vol. 11, 1230-1233, 2012.
doi:10.1109/LAWP.2012.2224311

15. Yun, S., D. Y. Kim, and S. Nam, "Bandwidth enhancement of a cavity-backed slot antenna using a via-hole above the slot," IEEE Antennas and Wireless Propag. Lett., Vol. 11, 1092-1095, 2012.

16. Emadian, S. R., C. Ghobadi, J. Nourinia, M. H. Mirmozafari, and J. Pourahmadazar, "Bandwidth enhancement of cpw-fed circle like slot antenna with dual band-notched characteristics," IEEE Antennas and Wireless Propag. Lett., Vol. 11, 543-546, 2012.
doi:10.1109/LAWP.2012.2199274

17. Mitra, D., B. Ghosh, A. Sarkhel, and S. R. B. Chaudhuri, "A miniaturized ring slot antenna design with enhanced radiation characteristics," IEEE Trans. Antennas Propag., Vol. 64, No. 1, 300-305, Jan. 2016.
doi:10.1109/TAP.2015.2496628

18. Mosallaei, H. and K. Sarabandi, "Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate," IEEE Trans. Antennas Propag., Vol. 52, No. 9, 2403-2414, Sep. 2004.
doi:10.1109/TAP.2004.834135

19. Dong, Y., H. Toyao, and T. Itoh, "Design and characterization of miniaturized patch antennas loaded with complementary split-ring resonator," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 772-785, Feb. 2012.
doi:10.1109/TAP.2011.2173120

20. Xu, H.-X., G.-M.Wang, J.-G. Liang, M. Q. Qi, and X. Gao, "Compact circularly polarized antennas combining meta-surfaces and strong space-filling meta-resonator," IEEE Trans. Antennas Propag., Vol. 61, No. 7, 3442-3450, Jul. 2013.
doi:10.1109/TAP.2013.2255855

21. Noghanian, S. and L. Shafai, "Gain enhancement of annular slot antennas," IEE Proc. Microw. Antennas Propag., Vol. 148, No. 2, 109-114, Apr. 2001.
doi:10.1049/ip-map:20010331