Vol. 67
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-05-09
A Novel Interconnection Technique Using Zero-Degree Phase Shifting Microstrip TL for RF QFN Package at S-Band
By
Progress In Electromagnetics Research Letters, Vol. 67, 125-130, 2017
Abstract
In this paper, we propose a novel interconnection technique for a flip-chip quad flat no-lead (FC QFN) package which can decrease the amount of the transmission line (TL) phase shift. The RF die inputs and outputs (I/O) are connected to the package lead fingers by a small size, 1000 μm length, microstrip line having a gap capacitor consisting of staked plates (fingers) where the space in between is filled by a ceramic material of 10.2 dielectric constant value. This technique can reduce the effect of transmission line inductance and makes the novel package interconnection behaving as a composite left right handed (CLRH) TL; hence, one can set the TL phase shift to zero degree at the desired operating frequency band (i.e. S-band) by just tuning geometrical and/or physical interconnection structure parameters.
Citation
Mohssin Aoutoul, Abderrahim Haddad, Mohammad Essaaidi, and Mustapha Faqir, "A Novel Interconnection Technique Using Zero-Degree Phase Shifting Microstrip TL for RF QFN Package at S-Band," Progress In Electromagnetics Research Letters, Vol. 67, 125-130, 2017.
doi:10.2528/PIERL17031301
References

1. Aoutoul, M., N. Healey, J. Kiwan, F. Bourzeix, B. Lakssir, and M. Essaaidi, "Investigation on C-loaded microstrip line for very low phase shifting small size TL for S-band RF QFN package," Progress In Electromagnetics Research Symposium, 1005, Marrakesh, Morocco, March 20-23, 2011.

2. Lai, A., T. Itoh, and C. Caloz, "Composite right/left-handed transmission line metamaterials," IEEE Microwave Magazine, Vol. 5, No. 3, 34-50, 2004.
doi:10.1109/MMW.2004.1337766

3. Caloz, C. and T. Itoh, "Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip ``LH line"," Antennas and Propagation Society International Symposium, Vol. 2, 412-415, IEEE, 2002.
doi:10.1109/APS.2002.1016111

4. Sanada, A., C. Caloz, and T. Itoh, "Characteristics of the composite right/left-handed transmission lines," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 2, 68-70, 2004.
doi:10.1109/LMWC.2003.822563

5. Sanada, A., C. Caloz, and T. Itoh, "Characteristics of the composite right/left-handed transmission lines," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 2, 68-70, 2004.
doi:10.1109/LMWC.2003.822563

6. Iyer, A. K. and G. V. Eleftheriades, "Leaky-wave radiation from planar negative-refractive-index transmission-line metamaterials," Antennas and Propagation Society International Symposium, Vol. 2, 1411-1414, IEEE, 2004.

7. Caloz, C. and T. Itoh, "Novel microwave devices and structures based on the transmission line approach of meta-materials," 2003 IEEE MTT-S International Microwave Symposium Digest, Vol. 1, 195-198, 2003.
doi:10.1109/MWSYM.2003.1210914

8. Velez, P., J. Bonache, and F. Martin, "Dual and broadband power dividers at microwave frequencies based on composite right/left handed (CRLH) lattice networks," Photonics and Nanostructures --- Fundamentals and Applications, Science Direct, Vol. 12, No. 4, 269-278, August 2014.
doi:10.1016/j.photonics.2014.05.006

9. Chen, H.-Y. and C.-P. Su, "Calculations of return loss of bonding wires fabricated on a test board by FDTD method," Microwave and Optical Technology Letters (MOTL), Vol. 49, No. 7, 1603-1606, July 2007, DOI 10.1002/mop.
doi:10.1002/mop.22546

10. Kim, S.-H., J.-H. Yoon, Y. Kim, and Y.-C. Yoon, "A modi ed Wilkinson divider using zero-degree phase shifting composite right/left-handed transmission line," 2010 IEEE MTT-S International Microwave Symposium Digest (MTT), 1556-1559, 2010.
doi:10.1109/MWSYM.2010.5516639