Vol. 69
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-07-17
Wide Stopband Microstrip Triplexer Using Common Crossed Resonator and Uniform Impedance Resonator
By
Progress In Electromagnetics Research Letters, Vol. 69, 79-86, 2017
Abstract
A novel microstrip triplexer with a common crossed resonator and some uniform impedance resonators (UIR) is proposed in this paper. The crossed resonator is theoretically analyzed and proved to be able to resonate at three different frequencies. By using the crossed resonator as the common resonator, a compact structure can be gained as no extra matching network is needed, and the number of the resonator can be reduced effectively. Moreover, a wide stopband is obtained by setting the crossed resonator and UIRs working at the same fundamental frequencies but different higher order resonant frequencies. To demonstrate the design procedure, a triplexer with a third order Chebyshev response in each channel is fabricated and measured. The measured result is in good agreement with the simulated one, showing an attenuation of 20 dB up to 8 times the first channel frequency.
Citation
Jian-Feng Qian, and Fu-Chang Chen, "Wide Stopband Microstrip Triplexer Using Common Crossed Resonator and Uniform Impedance Resonator," Progress In Electromagnetics Research Letters, Vol. 69, 79-86, 2017.
doi:10.2528/PIERL17041703
References

1. Huang, C.-Y., M.-H. Weng, C.-S. Ye, and Y.-X. Xu, "A high band isolation and wide stopband diplexer using dual-mode stepped-impedance resonators," Progress In Electromagnetics Research, Vol. 100, 299-308, 2010.
doi:10.2528/PIER09112701

2. Shi, J., J.-X. Chen, and Z.-H. Bao, "Diplexers based on microstrip line resonators with loaded element," Progress In Electromagnetics Research, Vol. 115, 423-3439, 2011.
doi:10.2528/PIER11031516

3. Yang, R.-Y., C.-M. Hsiung, C.-Y. Huang, and C.-C. Lin, "Design of a high band isolation diplexer for GPS and WLAN system using modified stepped-impedance resonator," Progress In Electromagnetics Research, Vol. 107, 101-114, 2010.
doi:10.2528/PIER10060913

4. Chen, C. F., T. Y. Huang, C. P. Chou, and R. B. Wu, "Microstrip diplexers design with common resonator sections for compact size, but high isolation," IEEE Trans. Microw. Theory Tech., Vol. 54, 1945-1952, 2006.
doi:10.1109/TMTT.2006.873613

5. Tantiviwat, S., N. Intarawiset, and R. Jeenawong, "Wide-stopband, compact microstrip diplexer with common resonator using stepped-impedance resonators," IEEE Tencon. Spring Conf., 17-19, Sydney, Australia, Jun. 2013.

6. Chen, C. F., T. Y. Huang, T. M. Shen, and R. B.Wu, "A miniaturized microstrip common resonator triplexer without extra matching network," Asia Europe Microw. Conf., 1439-1442, Yokohama, Japan, Dec. 2006.

7. Chuang, M. L. and M. T. Wu, "Microstrip diplexer design using common T-shaped resonator," IEEE Microw. Wireless Compon. Lett., Vol. 21, 583-585, 2011.
doi:10.1109/LMWC.2011.2168949

8. Chu, Q. X., F. C. Chen, Z. H. Tu, and H. Wang, "A novel crossed resonator and its applications to bandpass filters," IEEE Trans. Microw. Theory Tech., Vol. 57, 1753-1759, 2009.
doi:10.1109/TMTT.2009.2022873

9. Chen, C. F., T. Y. Huang, C. P. Chou, and R. B. Wu, "Design of microstrip bandpass filters with multiorder spurious-mode suppression," IEEE Trans. Microw. Theory Tech., Vol. 53, 3788-3793, 2005.
doi:10.1109/TMTT.2005.859869

10. Cameron, R. J., C. M. Kudsia, and R. R. Mansour, Microwave Filters for Communication Systems Fundamentals Design and Applications, Wiley, New York, 2007.