PIER Letters
 
Progress In Electromagnetics Research Letters
ISSN: 1937-6480
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 70 > pp. 139-146

SCATTERING OF NON-DIFFRACTING VORTEX ELECTROMAGNETIC WAVE BY TYPICAL TARGETS

By M. P. Yu, Y. Han, and Z. Cui

Full Article PDF (903 KB)

Abstract:
In the field of radar target detection, vortex electromagnetic (EM) wave carrying orbital angular momentum (OAM) has drawn great attention in recent years because of its prospect to improve the capacity of information acquisition. As a typical vortex EM wave, the high-order Bessel vortex beam (HOBVB) has the properties of non-diffraction propagation, small central spot diameter, good direction, and long propagation distance. This study investigates the scattering of non-diffracting HOBVB by radar targets. The mathematical description of the electromagnetic field components of the arbitrarily incident HOBVB are given. The surface integral equations for solving the scattering problems involving typical radar targets are established. The effects by OAM intrinsic mode characteristics on the radar scattering cross section are simulated. This investigation is expected to provide useful guidance for revealing EM scattering mechanism in the OAM domain.

Citation:
M. P. Yu, Y. Han, and Z. Cui, "Scattering of Non-Diffracting Vortex Electromagnetic Wave by Typical Targets," Progress In Electromagnetics Research Letters, Vol. 70, 139-146, 2017.
doi:10.2528/PIERL17060504

References:
1. Yao, A. M. and M. J. Padgett, "Orbital angular momentum: Origins, behavior and applications," Adv. Opt. Photon., Vol. 3, 161-204, 2011.
doi:10.1364/AOP.3.000161

2. Swartzlander, G. A. and C. T. Law, "Optical vortex solitons observed in Kerr nonlinear media," Phys. Rev. Lett., Vol. 69, 2503-2506, 1992.
doi:10.1103/PhysRevLett.69.2503

3. Franke-Arnold, S., L. Allen, and M. Padgett, "Advances in optical angular momentum," Laser & Photon. Rev., Vol. 2, 299-313, 2008.
doi:10.1002/lpor.200810007

4. Mitri, F. G., "Arbitrary scattering of an acoustical high-order Bessel trigonometric (non-vortex) beam by a compressible soft fluid sphere," Ultrasonics, Vol. 53, 956-961, 2013.
doi:10.1016/j.ultras.2012.12.008

5. Dardari, D. and V. Tralli, "High-speed indoor wireless communications at 60 GHz with coded OFDM," IEEE Transactions on Communications, Vol. 47, No. 11, 1709-1721, 1999.
doi:10.1109/26.803506

6. Li, R. X., C. Y. Ding, K. F. Ren, X. E. Han, L. X. Guo, Z. S. Wu, and S. X. Gong, "Scattering of a high-order Bessel beam by a sphere," 10th International Symposium on Antennas, Propagation & EM Theory, 833-836, 2012.

7. Durnin, J., J. Miceli, and J. H. Eberly, "Diffraction-free beams," Phys. Rev. Lett., Vol. 58, No. 15, 1499-1501, 1987.
doi:10.1103/PhysRevLett.58.1499

8. Mitri, F. G., "Acoustic scattering of a high-order Bessel beam by an elastic sphere," Ann. Phys., Vol. 323, No. 11, 2840-2850, 2008.
doi:10.1016/j.aop.2008.06.008

9. Mitri, F. G., "Electromagnetic wave scattering of a high-order Bessel vortex beam by a dielectric sphere," IEEE Trans. Antennas Propag., Vol. 59, 4375-4379, 2011.
doi:10.1109/TAP.2011.2164228

10. Durnin, J., "Exact solutions for nondiffraction beams. I. The scalar theory," JOSA A, Vol. 4, 651-654, 1987.
doi:10.1364/JOSAA.4.000651

11. Mishra, S. R., "A vector wave analysis of a Bessel beam," Opt. Commun., Vol. 85, 159-161, 1991.
doi:10.1016/0030-4018(91)90386-R

12. Mitri, F. G., "Electromagnetic wave scattering of a high-order Bessel vortex beam by a dielectric sphere," IEEE Trans. Antennas Propag., Vol. 59, 4375-4379, 2011.
doi:10.1109/TAP.2011.2164228

13. Sheng, X. Q., J. M. Jin, J. M. Song, and W. C. Chew, "Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies," IEEE Trans. Antennas Propag., Vol. 46, No. 11, 1718-1726, 1998.
doi:10.1109/8.736628

14. Chew, W. C., J. M. Jin, E. Michielssen, and J. M. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, Boston, 2001.

15. Ubeda, E., J. M. Tamayo, and J. M. Rius, "Taylor-orthogonal basis functions for the discretization in method of moments of second kind integral equations in the scattering analysis of perfectly conducting or dielectric objects," Progress In Electromagnetics Research, Vol. 119, 85-105, 2011.
doi:10.2528/PIER11051715

16. Mittra, R., Computer Techniques for Electromagnetics, Pergamon Press, Oxford, 1973.

17. Gibson, W. C., The Method of Moments in Electromagnetics, Chapman & Hall Taylor & Francis Group, Boca Raton London, New York, 2008.

18. Volakis, J. L. and K. Sertel, Integral Equation Methods for Electromagnetics, SciTech Publishing, Inc., Raleigh, NC, 2012.

19. Rao, S. M., D. R. Wilton, and A. W. Glisso, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

20. Harrington, R. F., Field Computation by Moment Methods, Macmillan, New York, 1968.

21. Taylor, J. M., "On the concept of near field radar cross section," Proceedings of IEEE Transactions on Antennas and Propagation Society International Symposium, 1172-1175, IEEE, Montreal, Quebec, Canada, 1997.

22. Taylor, J. M., "On the concept of near field radar cross section," IEEE Microwave Magazine, Vol. 8, No. 2, 77-82, April 2007.

23. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, 2nd Ed., SciTech Publishing, Inc., Raleigh, NC, 2004.


© Copyright 2010 EMW Publishing. All Rights Reserved