Vol. 70
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-08-24
Archimedean Spiral Antenna with Two Opposite Uni-Directional Circularly Polarized Radiation Bands Designed by Resonance Based Reflectors
By
Progress In Electromagnetics Research Letters, Vol. 70, 23-30, 2017
Abstract
Two opposite uni-directional radiation bands with good circular polarization (CP) characteristics are achieved in an Archimedean Spiral Antenna (ASA). A sandwich configuration is formed by utilizing two resonance based reflectors (RBRs) at the bottom and top sides of the ASA. Owing to the resonance characteristic, the RBRs do not act as reflectors at the other operational band, then, opposite uni-directional radiations are obtained, and the two uni-directional bands can be tuned independently. The proposed ASA with two uni-directional bands (ASA-TUB) has a wide impedance bandwidth about 4.4:1 (1.8-8 GHz), while its front-fire band (FFB) ranges from 1.8 GHz to 2.2 GHz (20.0%), and its back-fire band (BFB) is 4.4-7.1 GHz (46.9%) for front-to-back ratio (FBR) larger than 5 dB. The maximal FBRs for the FFB and BFB are 11.3 dB and 20 dB, respectively. Moreover, good CP performances are also obtained for the FFB and BFB. Besides, the whole profile of the proposed antenna is only 0.16 λ at the lowest operational frequency. The proposed antenna has the properties of dual opposite uni-directional radiation bands, low profile, good FBR and CP.
Citation
Ji-Yang Xie, Lin Peng, Bao-Jian Wen, and Xing Jiang, "Archimedean Spiral Antenna with Two Opposite Uni-Directional Circularly Polarized Radiation Bands Designed by Resonance Based Reflectors," Progress In Electromagnetics Research Letters, Vol. 70, 23-30, 2017.
doi:10.2528/PIERL17062010
References

1. Kaiser, J. A., "The Archimedean two-wire spiral antenna," IRE Trans. Antennas Propag., Vol. 8, No. 3, 312-323, 1960.
doi:10.1109/TAP.1960.1144840

2. Rahman, N., Q. Junhui, A. Sharma, V. A. Tran, M. N. Afsar, and R. Cheung, "Beam-width control using a cavity-backed elliptical Archimedean spiral antenna," 2011 IEEE Aerospace Conference, 1-9, 2011.

3. Nakano, H., S. Sasaki, H. Oyanagi, and J. Yamauchi, "Cavity-backed Archimedean spiral antenna with strip absorber," IET Microwaves, Antennas & Propagation, Vol. 2, No. 7, 725-730, 2008.
doi:10.1049/iet-map:20080022

4. Fang, H. R., M. Serhir, R. Balakrishnan, and R. Guinvarc’h, "Low profile cavity-backed four-arm Archimedean spiral antenna with 8 : 1 bandwidth," The 8th EuCAP, 2528-2531, 2014.

5. Mohamad, S., R. T. Cahill, and V. Fusco, "Selective high impedance surface active region loading of Archimedean spiral antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 810-813, 2014.
doi:10.1109/LAWP.2014.2314860

6. Schreider, L., X. Begaud, M. Soiron, and B. Perpere, "Design of a broadband Archimedean spiral antenna above a thin modified Electromagnetic Band Gap substrate," 2006 FEC on Antennas and Propagation, 1-4, 2006.

7. Ding, C. Y., C. L. Ruan, and L. Peng, "A novel Archimedean spiral antenna with uniplanar EBG substrate," 2008 ISAPE, 313-315, 2008.

8. Shire, A. M. and F. C. Seman, "Parametric studies of Archimedean spiral antenna for UWB applications," 2014 IEEE APACE, 275-278, 2014.

9. Tran, P. N. and S. K. Sharma, "An Archimedean spiral antenna loaded with superstrate and backed by 3D printed ground structure for directional patterns," IEEE International Symposium on Antennas and Propagation, 1829-1830, 2016.

10. Peng, L., J. Y. Xie, K. Sun, X. Jiang, and S. M. Li, "Resonance based reflector and its application in uni-directional antenna with low-profile and broadband characteristics for wireless applications," Sensors, Vol. 16, No. 12, 2092, 2016.
doi:10.3390/s16122092

11. CST Microwave Studio [Online], Available: http/www.cst.com, .
doi:10.3390/s16122092

12. Liu, Q., C. L. Ruan, L. Peng, and W. X. Wu, "A novel compact Archimedean spiral antenna with gap-loading," Progress In Electromagnetics Research Letters, Vol. 3, 169-177, 2008.
doi:10.2528/PIERL08032002

13. Peng, L., K. Sun, J. Y. Xie, Y. J. Qiu, and X. Jiang, "UWB bi-directional bow-tie antenna loaded by rings," Journal of the Korean Physical Society, Vol. 69, No. 1, 22-30, 2016.
doi:10.3938/jkps.69.22