Vol. 72
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-12-06
Broadband Switchable 3D Structure Used for Protecting Information Equipment from Electromagnetic with Strong Field
By
Progress In Electromagnetics Research Letters, Vol. 72, 55-60, 2018
Abstract
This paper presents a broadband switchable 3D structure, which can be used to protect the information equipment from high intensity microwave wave. Compared to other defending designs, the proposed structure in this paper has wider working band. When the amplitude of incident wave within working band is low, the structure would allow them to pass with little loss. As the amplitude of incident wave is high enough to activate diode, the wave would be reflected. The Full-wave simulations are performed in CST to analyze the transmission performance. The simulated results verify the transmission performance and defending function. Its working principle is explained through change of the effective material parameters at two states. A prototype is fabricated. The protection property of the structure as a function of intensity of incident wave is verified in waveguide simulator.
Citation
Bo Yi, Xiwei Geng, and Li Yang, "Broadband Switchable 3D Structure Used for Protecting Information Equipment from Electromagnetic with Strong Field," Progress In Electromagnetics Research Letters, Vol. 72, 55-60, 2018.
doi:10.2528/PIERL17103003
References

1. Nitsch, d., M. Camp, F. Sabath, et al. "Susceptibility of some electronic equipment to HPEM threats," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, No. 3, 380-389, 2004.
doi:10.1109/TEMC.2004.831842

2. Monni, s., D. Bekers, M. van Wanum, et al. "Limiting frequency selective surface," EuMC 2009 Microwave Conference, 606-609, Rome, European, 2009.

3. Yang, c., P. Liu, and X. Huang, "A novel method of energy selective surface for adaptive HPM/EMP protection," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 112-115, 2013.
doi:10.1109/LAWP.2013.2243105

4. Katko, A. R., A. M. Hawkes, J. P. Barrett, and S. A. Cummer, "RF limiter metamaterial using p-i-n diodes," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1571-1574, 2011.
doi:10.1109/LAWP.2011.2182490

5. Kim, S., H. Wakassuchi, J. J. Rushton, and D. F. Sievenpiper, "Switchable nonlinear metasurfaces for absorbing high power surface waves," Applied Physics Letters, Vol. 108, 041903, 2016.
doi:10.1063/1.4940712

6. Wakascuchi, H., J. J. Rushtom, J. Lee, F. Gao, et al. "Experimental demonstration of nonlinear waveform-dependent metasurface absorber with pulsed signals," Electronics Letters, Vol. 49, No. 24, 1530-1531, 2013.
doi:10.1049/el.2013.3010

7. Wakascuchi, H., S. Kim, J. J. Rushton, and D. F. Sievenpiper, "Circuit-based nonlinear metasurface absorbers for high power surface currents," Applied Physics Letters, Vol. 102, 214103, 2013.
doi:10.1063/1.4809535

8. Wakascuchi, H., S. Kim, J. J. Rushton, and D. F. Sievenpiper, "Waveform-dependent absorbing metasurfaces," Physics Review Letters, Vol. 111, No. 24, 245501, 2013.
doi:10.1103/PhysRevLett.111.245501

9. Wakascuchi, H., J. J. Rushton, S. Kim, and D. F. Sievenpiper, "Metasurfaces to select waveforms at the same frequency," 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics — Metamaterials, 2014.

10. Wall, W. S., S. M. Rudolph, S. K. Hong, and K. L. Morgan, "Broadband switching nonlinear metamaterial," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 427-430, 2014.
doi:10.1109/LAWP.2014.2308989

11. Scott, S., C. D. Nordquist, et al. "A frequency selective surface with integrated limiter for receiver protection," IEEE Antennas and Propagation Society International Symposium (APSURSI), 1-2, 2012.

12. Szabo, Z., G.-H. Park, R. Hedge, and E.-P. Li, "A unique extraction of metamaterial parameters based on Kramers-Kronig relationship," IEEE Transactions on Microwave Theory and Technology, Vol. 58, No. 10, 2646-2653, 2010.
doi:10.1109/TMTT.2010.2065310