PIER Letters
 
Progress In Electromagnetics Research Letters
ISSN: 1937-6480
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 74 > pp. 77-82

THE OPTIMIZATION AT STUDYING OF ELECTRICAL CONDUCTIVITY IN THE DIELECTRIC NANOCOMPOSITES WITH DISORDERED NANOTUBES

By G. Burlak and G. Medina-Angel

Full Article PDF (456 KB)

Abstract:
We study the electrical conductivity of three-dimensional (3D) nanocomposite with incorporated random carbon nanotubes (CNT). Large length of the remote nanotubes generates a lot of intersections that induce rather small percolating threshold of the global conductivity in this medium. We simulate such a system by random cylinders placed in a percolating parallelepiped with the use of Monte Carlo method. Conductivity of such structure is associated with the critical phenomena, where the main transition parameter is de ned by the value of the percolation threshold. We calculate the minimal percolating threshold and determine the functional form of the conductivity by the global optimization technique. Such an approach allows studying the details of the electrical conductivity in nanocomposites even at signi cant level of the percolating fluctuations.

Citation:
G. Burlak and G. Medina-Angel, "The Optimization at Studying of Electrical Conductivity in the Dielectric Nanocomposites with Disordered Nanotubes," Progress In Electromagnetics Research Letters, Vol. 74, 77-82, 2018.
doi:10.2528/PIERL17120407

References:
1. Coleman, J. N., S. Curran, A. B. Dalton, A. P. Davey, B. McCarthy, W. Blau, and R. C. Barklie, "Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite," Phys. Rev. B, Vol. 58, 7462-7495, 1998.
doi:10.1103/PhysRevB.58.R7492

2. Berhan, L. and A. M. Sastry, "Modeling percolation in high-aspect-ratio fiber systems. I. Soft-core versus hard-core models," Phys. Rev. E, Vol. 75, 1-8, 2007.

3. Eletskii, A. V., A. A. Knizhnik, B. V. Potapkin, and J. M. Kenny, "Electrical characteristics of carbon nanotube-doped composites," Physics --- Uspekhi, Vol. 58, 225-270, 2015.
doi:10.3367/UFNe.0185.201503a.0225

4. Foygel, M., R. D. Morris, D. Anez, S. French, and V. L. Sobolev, "Theoretical and computational studies of carbon nanotube composites and suspensions:Electrical and thermal conductivity," Phys. Rev. B, Vol. 71, 104201.1-104201.8, 2005.
doi:10.1103/PhysRevB.71.104201

5. Ma, H. M. and X.-L. Gao, "A three-dimensional Monte Carlo model for electrically conductive polymer matrix composites filled with curved fibers," Polymer, Vol. 49, 4230-4238, 2008.
doi:10.1016/j.polymer.2008.07.034

6. Gu, H., J. Wang, and C. Yu, "Three-dimensional modeling of percolation behavior of electrical conductivity in segregated network polymer nanocomposites using Monte Carlo method," Advances in Materials, Vol. 5, 1-8, 2016.
doi:10.11648/j.am.20160501.11

7. Lin, K. C., D. Lee, L. An, and H. J. Young, "Finite-size scaling features of electric conductivity percolation in nanocomposites," Nanoscience and Nanoengineering, Vol. 1, 15-22, 2013.

8. Ning, H., M. Zen, Y. Cheng, and Y. Go, "The electrical properties of polymernanocomposites with carbon nanotubefillers," Nanotechnology, Vol. 19, 215701, 2008.
doi:10.1088/0957-4484/19/21/215701

9. Sagalianov, I., L. Vovchenko, L. Matzui, and O. Lazarenko, "Synergistic enhancement of the percolation threshold in hybrid polymeric nanocomposites based on carbon nanotubes and graphite nanoplatelets," Nanoscale Research Letters, Vol. 12, No. 140, 2017.

10. Wang, X., Q. Li, J. Xie, Z. Jin, J. Wang, and Y. Li, "Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates," Nano Lett., Vol. 9, 3137-3141, 2009.
doi:10.1021/nl901260b

11. Attiya, A. M., "Lower frequency limit of carbon nanotube antenna," Progress In Electromagnetics Research, Vol. 94, 419-433, 2009.
doi:10.2528/PIER09062001

12. Aidi, M. and T. Aguili, "Electromagnetic modeling of coupled carbon nanotube dipole antennas based on integral equations system," Progress In Electromagnetics Research M, Vol. 40, 179-183, 2014.
doi:10.2528/PIERM14111404

13. Mikki, S. M. and A. A. Kishk, "Derivation of the carbon nanotube susceptibility tensor using lattice dynamics formalism," Progress In Electromagnetics Research B, Vol. 9, 1-26, 2008.
doi:10.2528/PIERB08082301

14. Bychanok, D., G. Gorokhov, D. Meisak, P. Kuzhir, S. A. Maksimenko, Y. Wang, Z. Han, X. Gao, and H. Yue, "Design of carbon nanotube-based broadband radar absorber for ka-band frequency range," Progress In Electromagnetics Research M, Vol. 53, 9-16, 2017.
doi:10.2528/PIERM16090303

15. Dai, Q., H. Butt, R. Rajasekharan, T. D. Wilkinson, and G. A. J. Amaratunga, "Fabrication of carbon nanotubes on inter-digitated metal electrode for switchable nanophotonic devices," Progress In Electromagnetics Research, Vol. 127, 65-77, 2012.
doi:10.2528/PIER12022603

16. Savi, P., M. Yasir, M. Giorcelli, and A. Tagliaferro, "The effect of carbon nanotubes concentration on complex permittivity of nanocomposites," Progress In Electromagnetics Research M, Vol. 55, 203-209, 2017.
doi:10.2528/PIERM16121901

17. Grimmett, G., Percolation and Disordered Systems, Springer-Verlag, Berlin, 1997.

18. Hesselbo, B. and R. B. Stinchcombe, "Monte Carlo simulation and global optimization without parameters," Phys. Rev. Lett., Vol. 74, 2151-2155, 1995.
doi:10.1103/PhysRevLett.74.2151

19. Lagarias, J. C., J. A. Reeds, M. H. Wright, and P. E. Wright, "Convergence properties of the nelder-mead simplex method in low dimensions," SIAM Journal of Optimization, Vol. 9, 112-147, 1998.
doi:10.1137/S1052623496303470

20. Press, W. H., S. A. Teukovsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C++, Cambridge University Press, Cambridge, 2002.

21. McCaffrey, J. D., "Amoeba method optimization using C#," Microsofts MSDN Magazine, Vol. 28, No. 6, 2013, Availabe at: https://msdn.microsoft.com/en-us/magazine/dn201752.aspx.


© Copyright 2010 EMW Publishing. All Rights Reserved