Vol. 74
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-03-23
The Optimization at Studying of Electrical Conductivity in the Dielectric Nanocomposites with Disordered Nanotubes
By
Progress In Electromagnetics Research Letters, Vol. 74, 77-82, 2018
Abstract
We study the electrical conductivity of three-dimensional (3D) nanocomposite with incorporated random carbon nanotubes (CNT). Large length of the remote nanotubes generates a lot of intersections that induce rather small percolating threshold of the global conductivity in this medium. We simulate such a system by random cylinders placed in a percolating parallelepiped with the use of Monte Carlo method. Conductivity of such structure is associated with the critical phenomena, where the main transition parameter is de ned by the value of the percolation threshold. We calculate the minimal percolating threshold and determine the functional form of the conductivity by the global optimization technique. Such an approach allows studying the details of the electrical conductivity in nanocomposites even at signi cant level of the percolating fluctuations.
Citation
Gennadiy Burlak, and Gustavo Medina-Angel, "The Optimization at Studying of Electrical Conductivity in the Dielectric Nanocomposites with Disordered Nanotubes," Progress In Electromagnetics Research Letters, Vol. 74, 77-82, 2018.
doi:10.2528/PIERL17120407
References

1. Coleman, J. N., S. Curran, A. B. Dalton, A. P. Davey, B. McCarthy, W. Blau, and R. C. Barklie, "Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite," Phys. Rev. B, Vol. 58, 7462-7495, 1998.
doi:10.1103/PhysRevB.58.R7492

2. Berhan, L. and A. M. Sastry, "Modeling percolation in high-aspect-ratio fiber systems. I. Soft-core versus hard-core models," Phys. Rev. E, Vol. 75, 1-8, 2007.

3. Eletskii, A. V., A. A. Knizhnik, B. V. Potapkin, and J. M. Kenny, "Electrical characteristics of carbon nanotube-doped composites," Physics --- Uspekhi, Vol. 58, 225-270, 2015.
doi:10.3367/UFNe.0185.201503a.0225

4. Foygel, M., R. D. Morris, D. Anez, S. French, and V. L. Sobolev, "Theoretical and computational studies of carbon nanotube composites and suspensions:Electrical and thermal conductivity," Phys. Rev. B, Vol. 71, 104201.1-104201.8, 2005.
doi:10.1103/PhysRevB.71.104201

5. Ma, H. M. and X.-L. Gao, "A three-dimensional Monte Carlo model for electrically conductive polymer matrix composites filled with curved fibers," Polymer, Vol. 49, 4230-4238, 2008.
doi:10.1016/j.polymer.2008.07.034

6. Gu, H., J. Wang, and C. Yu, "Three-dimensional modeling of percolation behavior of electrical conductivity in segregated network polymer nanocomposites using Monte Carlo method," Advances in Materials, Vol. 5, 1-8, 2016.
doi:10.11648/j.am.20160501.11

7. Lin, K. C., D. Lee, L. An, and H. J. Young, "Finite-size scaling features of electric conductivity percolation in nanocomposites," Nanoscience and Nanoengineering, Vol. 1, 15-22, 2013.

8. Ning, H., M. Zen, Y. Cheng, and Y. Go, "The electrical properties of polymernanocomposites with carbon nanotubefillers," Nanotechnology, Vol. 19, 215701, 2008.
doi:10.1088/0957-4484/19/21/215701

9. Sagalianov, I., L. Vovchenko, L. Matzui, and O. Lazarenko, "Synergistic enhancement of the percolation threshold in hybrid polymeric nanocomposites based on carbon nanotubes and graphite nanoplatelets," Nanoscale Research Letters, Vol. 12, No. 140, 2017.

10. Wang, X., Q. Li, J. Xie, Z. Jin, J. Wang, and Y. Li, "Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates," Nano Lett., Vol. 9, 3137-3141, 2009.
doi:10.1021/nl901260b

11. Attiya, A. M., "Lower frequency limit of carbon nanotube antenna," Progress In Electromagnetics Research, Vol. 94, 419-433, 2009.
doi:10.2528/PIER09062001

12. Aidi, M. and T. Aguili, "Electromagnetic modeling of coupled carbon nanotube dipole antennas based on integral equations system," Progress In Electromagnetics Research M, Vol. 40, 179-183, 2014.
doi:10.2528/PIERM14111404

13. Mikki, S. M. and A. A. Kishk, "Derivation of the carbon nanotube susceptibility tensor using lattice dynamics formalism," Progress In Electromagnetics Research B, Vol. 9, 1-26, 2008.
doi:10.2528/PIERB08082301

14. Bychanok, D., G. Gorokhov, D. Meisak, P. Kuzhir, S. A. Maksimenko, Y. Wang, Z. Han, X. Gao, and H. Yue, "Design of carbon nanotube-based broadband radar absorber for ka-band frequency range," Progress In Electromagnetics Research M, Vol. 53, 9-16, 2017.
doi:10.2528/PIERM16090303

15. Dai, Q., H. Butt, R. Rajasekharan, T. D. Wilkinson, and G. A. J. Amaratunga, "Fabrication of carbon nanotubes on inter-digitated metal electrode for switchable nanophotonic devices," Progress In Electromagnetics Research, Vol. 127, 65-77, 2012.
doi:10.2528/PIER12022603

16. Savi, P., M. Yasir, M. Giorcelli, and A. Tagliaferro, "The effect of carbon nanotubes concentration on complex permittivity of nanocomposites," Progress In Electromagnetics Research M, Vol. 55, 203-209, 2017.
doi:10.2528/PIERM16121901

17. Grimmett, G., Percolation and Disordered Systems, Springer-Verlag, Berlin, 1997.

18. Hesselbo, B. and R. B. Stinchcombe, "Monte Carlo simulation and global optimization without parameters," Phys. Rev. Lett., Vol. 74, 2151-2155, 1995.
doi:10.1103/PhysRevLett.74.2151

19. Lagarias, J. C., J. A. Reeds, M. H. Wright, and P. E. Wright, "Convergence properties of the nelder-mead simplex method in low dimensions," SIAM Journal of Optimization, Vol. 9, 112-147, 1998.
doi:10.1137/S1052623496303470

20. Press, W. H., S. A. Teukovsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C++, Cambridge University Press, Cambridge, 2002.

21. McCaffrey, J. D., "Amoeba method optimization using C#," Microsofts MSDN Magazine, Vol. 28, No. 6, 2013, Availabe at: https://msdn.microsoft.com/en-us/magazine/dn201752.aspx.