Vol. 79

Latest Volume
All Volumes
All Issues
2018-10-23

Using Homogeneous Equivalent Parameters in Finite Element Models of Curved Metamaterial Structures

By Richard Mattish, Fabio Alves, and Dragoslav Grbovic
Progress In Electromagnetics Research Letters, Vol. 79, 103-108, 2018
doi:10.2528/PIERL18070302

Abstract

We report on the experimental verification of the employment of equivalent parameters in a 2D finite element model to describe absorptivity of curve-shaped, large-scale metamaterial structures. Equivalent homogeneous optical parameters were retrieved from experimental measurements of flat metamaterial sheets with square resonators of 8 and 9 mm and used in a 2D FE model to obtain the absorptivity of curved structures with similar metamaterial unit cells. The curved structures were experimentally characterized and showed good agreement with the model. The tremendous simplification made possible by simulating complex structures as homogeneous materials makes the method very attractive for designing large-scale electromagnetic shields and absorbers.

Citation


Richard Mattish, Fabio Alves, and Dragoslav Grbovic, "Using Homogeneous Equivalent Parameters in Finite Element Models of Curved Metamaterial Structures," Progress In Electromagnetics Research Letters, Vol. 79, 103-108, 2018.
doi:10.2528/PIERL18070302
http://www.jpier.org/PIERL/pier.php?paper=18070302

References


    1. Dean, P., A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim, R. Alhathlool, A. D. Burnett, L. H. Li, S. P. Khanna, D. Indjin, T. Taimre, A. D. Rakic, E. H. Linfield, and A. G. Davies, "Terahertz imaging using quantum cascade lasers --- A review of systems and applications," J. Phys. D, Vol. 47, 374008, 2014.
    doi:10.1088/0022-3727/47/37/374008

    2. Qiao, S., Y. Zhang, S. Liang, L. Sun, H. Sun, G. Xu, Y. Zhao, and Z. Yang, "Multi-band terahertz active device with complementary metamaterial," J. Appl. Phys., Vol. 118, 123106, 2015.
    doi:10.1063/1.4931583

    3. Vendik, I. B. and O. G. Vendik, "Metamaterials and their applications in microwaves: A review," Tech. Phys., Vol. 58, 1-24, 2013.
    doi:10.1134/S1063784213010234

    4. Boggi, S., R. Alonso, and W. G. Fano, "Shielding effectiveness of a metamaterial measured at microwave range of frequency, known as wire screen metamaterial (WSM)," Progress In Electromagnetics Research M, Vol. 63, 33-46, 2018.
    doi:10.2528/PIERM17090603

    5. Tsutaoka, T., K. Hatakeyama, and T. Kasagi, "Possibilities for the EM absorber and shielding by use of metamaterials," 2009 International Symposium on Electromagnetic Compatibility, Kyoto, Japan, Jul. 20-24, 2009.

    6. Solovey, A., "Theoretical limitations on shielding and reflective properties of microwave metamaterial absorbers," 2017 International workshop on Antenna Technology: Small Antennas, Innovative Structure, and Applications (iWat), 148-151, Athens, 2017.
    doi:10.1109/IWAT.2017.7915343

    7. Aydin, K., I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Investigation of magnetic resonances for different split-ring resonator parameters and designs," New J. Phys., Vol. 7, 168-183, 2005.
    doi:10.1088/1367-2630/7/1/168

    8. Guo, H., N. Liu, L. Fu, T. P. Meyrath, T. Zentgraf, H. Schweizer, and H. Giessen, "Resonance hybridization in double split-ring resonator metamaterials," Optics Express, Vol. 15, 12095-12101, 2007.
    doi:10.1364/OE.15.012095

    9. Gwinner, M. C., E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, "Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography," Small, Vol. 5, 400-406, 2009.
    doi:10.1002/smll.200800923

    10. Ozturk, Y. and A. E. Yilmaz, "Multiband and perfect absorber with circular fishnet metamaterial and its variations," ACES, Vol. 31, 1445-1451, 2016.

    11. Shen, Y., Z. Pei, Y. Pang, J. Wang, A. Zhang, and S. Qu, "An extremely wideband and lightweight metamaterial absorber," J. Appl. Phys., Vol. 117, 224503, 2015.
    doi:10.1063/1.4922421

    12. Grbovic, D., F. Alves, B. Kearney, B. Waxer, R. Perez, and G. Omictin, "Metal-organic hybrid resonant terahertz absorbers with SU-8 photoresist dielectric layer," J. Micro/Nanolith. MEMS MOEMS, Vol. 12, No. 4, 041204, 2013.
    doi:10.1117/1.JMM.12.4.041204

    13. Alves, F., B. Kearney, D. Grbovic, N. V. Lavrik, and G. Karunasiri, "Strong terahertz absorption using SiO2/Al based metamaterial structures," Appl. Phys. Letters, Vol. 100, 111104, 2012.
    doi:10.1063/1.3693407

    14. Kearney, B., F. Alves, D. Grbovic, and G. Karunasiri, "Al/SiOx/Al single and multiband metamaterial absorbers for terahertz sensor applications," Opt. Engineering, Vol. 52, No. 1, 013801, 2013.
    doi:10.1117/1.OE.52.1.013801

    15. Tretyakov, S., Analytical Modeling in Applied Electromagnetics, Artech House, 2003.

    16. Hewitt, C., F. Alves, J. Luscombe, and D. Grbovic, "Application of equivalent medium parameters in finite element models of microwave metamaterials," J. Appl. Phys., Vol. 123, 115101, 2018.
    doi:10.1063/1.5008279

    17. Liu, R., C. Ji, Z. Zhao, and T. Zhou, "Metamaterials: Reshape and rethink," Engineering, Vol. 1, 179-184, 2015.
    doi:10.15302/J-ENG-2015036

    18. Alves, F., B. Kearney, D. Grbovic, and G. Karunasiri, "Narrowband terahertz emitters using metamaterial films," Optics Express, Vol. 20, 171863, 2012.