Vol. 80
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-11-23
A Novel Dual-Band Scheme for Magnetic Resonant Wireless Power Transfer
By
Progress In Electromagnetics Research Letters, Vol. 80, 53-59, 2018
Abstract
In this paper, a novel dual-band scheme is proposed and analyzed for dual-band magnetic resonant wireless power transfer. The scheme consists of a novel resonant coil structure for dual-band resonance and a coupling loop for dual-band impedance matching. Circuit-based analysis and experiments verify that our scheme can achieve dual-band power transfer easily and effectively, with its dual-band reflection coefficient lower than -18 dB and transmission efficiency over 37.21% at a distance of 20 cm at 6.78 MHz and 13.56 MHz.
Citation
Keke Ding, Ying Yu, and Hong Lin, "A Novel Dual-Band Scheme for Magnetic Resonant Wireless Power Transfer," Progress In Electromagnetics Research Letters, Vol. 80, 53-59, 2018.
doi:10.2528/PIERL18082201
References

1. Covic, G. A. and J. T. Boys, "Inductive power transfer," Proceedings of the IEEE, Vol. 101, No. 6, 1276-1289, Jun. 2013.
doi:10.1109/JPROC.2013.2244536

2. Badawe, M. El. and O. M. Ramahi, "Efficient meta surface rectenna for electromagnetic wireless power transfer and energy harvesting," Progress In Electromagnetics Research, Vol. 161, 35-40, 2018.
doi:10.2528/PIER18011003

3. Jang, B. J., S. Lee, and H. Yoon, "HF-band wireless power transfer system: Concept, issues, and design," Progress In Electromagnetics Research, Vol. 124, 211-231, 2012.
doi:10.2528/PIER11120511

4. Johns, B. B., "An introduction to the wireless power consortium standard and TI’s compliant solutions," Analog Applications Journal, 10-12, 2011.

5. Alliance, A., "A4WP wireless power transfer system baseline system specification (BSS) v 1.2.1,", 2014.

6. Chen, J.-F., Z. Ding, Z. Hu, S. Wang, Y. Cheng, M. Liu, B. Wei, and S. Wang, "Metamaterial-based high-efficiency wireless power transfer system at 13.56 MHz for low power applications," Progress In Electromagnetics Research B, Vol. 72, 17-30, 2017.
doi:10.2528/PIERB16071509

7. Li, X., C. Y. Tsui, and W. H. Ki, "A 13.56 MHz wireless power transfer system with reconfigurable resonant regulating rectifier and wireless power control for implantable medical devices," 2014 Symposium on VLSI Circuits Digest of Technical Papers, 1-2, 2014.

8. Kim, J., W. S. Choi, and J. Jeong, "Loop switching technique for wireless power transfer using magnetic resonance coupling," Progress In Electromagnetics Research, Vol. 138, 197-209, 2013.
doi:10.2528/PIER13012118

9. Kung, M. L. and K. H. Lin, "Investigation of dual-band coil module for near-field wireless power transfer systems," Wireless Power Transfer Conference, 265-268, 2014.

10. Ahn, D. and P. P. Mercier, "Wireless power transfer with concurrent 200-kHz and 6.78-MHz operation in a single-transmitter device," IEEE Transactions on Power Electronics, Vol. 31, No. 7, 5018-5029, 2016.

11. Jiang, C., K. T. Chau, W. Han, and W. Liu, "Development of multilayer rectangular coils for multiple-receiver multiple-frequency wireless power transfer," Progress In Electromagnetics Research, Vol. 163, 15-24, 2018.
doi:10.2528/PIER18060206

12. Kung, M. L. and K. H. Lin, "Dual-band coil module with repeaters for diverse wireless power transfer applications," IEEE Transactions on Microwave Theory & Techniques, Vol. 66, No. 1, 332-345, 2018.
doi:10.1109/TMTT.2017.2711010

13. Kung, M. L. and K. H. Lin, "Enhanced analysis and design method of dual-band coil module for near-field wireless power transfer systems," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 3, 821-832, 2015.
doi:10.1109/TMTT.2015.2398415

14. Kurs, A., A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Sci. Exp., Vol. 317, No. 5834, 83-86, Jun. 2007.

15. Peng, L., O. Breinbjerg, and N. A. Mortensen, "Wireless energy transfer through non-resonant magnetic coupling," Journal of Electromagnetic Waves and Applications, Vol. 24, 1587-1598, 2010.
doi:10.1163/156939310792149795

16. Kim, J. G., G. Wei, C. Zhu, and C. H. Rim, "Quality factor and topology analysis of the series-parallel combined resonant circuit-based wireless power transfer system," IEEE Transportation Electrification Conference and Expo., 2017.

17. Peng, L., J. Y. Wang, L. X. Ran, O. Breinbjerg, and N. A. Mortensen, "Performance analysis and experimental verification of mid-range wireless energy transfer through non-resonant magnetic coupling," Journal of Electromagnetic Waves and Applications, Vol. 25, 845-855, 2011.
doi:10.1163/156939311794827186