Vol. 81

Latest Volume
All Volumes
All Issues
2019-01-09

Design of Continuous Polyharmonic-Tuned Power Ampli Er with Optimal Knee Voltage Parameter

By Gideon Naah, Songbai He, and Weimin Shi
Progress In Electromagnetics Research Letters, Vol. 81, 51-58, 2019
doi:10.2528/PIERL18092803

Abstract

This paper presents the design of a continuous polyharmonic-tuned mode (CPHTM) power amplifier (PA) with an introduced optimal knee voltage waveform control parameter in a continuous harmonic-tuned voltage waveform equation. The optimal knee voltage waveform control parameter works in unison with derived equations, providing bandwidth and efficiency potentials over the limiting factors of the conventional harmonic-tuned power amplifiers (PAs). The effectiveness of the design strategy is proven by the realisation of a CPHTM type-I (CPHTMT-I) PA as compared with a non-continuous polyharmonic-tuned mode type-II (NCPHTMT-II) PA. Test results with continuous-wave (CW) signals show drain efficiency (DE) levels within 53.6%-79% (1.31-2.39 GHz) with 58.4% fractional bandwidth for CPHTMT-I and 64%-78% (1.65-1.95 GHz) with 16.7% fractional bandwidth for NCPHTMT-II. The CW result evidently shows the validation and efficacy of the proposed theory.

Citation


Gideon Naah, Songbai He, and Weimin Shi, "Design of Continuous Polyharmonic-Tuned Power Ampli Er with Optimal Knee Voltage Parameter," Progress In Electromagnetics Research Letters, Vol. 81, 51-58, 2019.
doi:10.2528/PIERL18092803
http://www.jpier.org/PIERL/pier.php?paper=18092803

References


    1. Zhou, X. Y., S. Y. Lee, W. S. Chan, S. Chen, and D. Ho, "Broadband efficiency-enhanced mutually coupled harmonic postmatching Doherty power amplifier," IEEE Trans. Circuits Syst. I, Regular Papers, Vol. 64, No. 7, 1758-1771, Jul. 2017.
    doi:10.1109/TCSI.2017.2658689

    2. Kim, J. H., S. J. Lee, B. H. Park, S. H. Jang, J. H. Jung, and C. S. Park, "Analysis of high-efficiency power amplifier using second harmonic manipulation: inverse class-F/J amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 8, 2024-2036, Aug. 2011.
    doi:10.1109/TMTT.2011.2157354

    3. Stameroff, A. N., H. H. Ta, A. Pham, R. E. Leoni, and III, "Wide-bandwidth power-combining and inverse class-F GaN power amplifier at X-band," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 3, 1291-1300, Mar. 2013.
    doi:10.1109/TMTT.2013.2244611

    4. Negra, R., A. Sadeve, S. Bensmida, and F. M. Ghannouchi, "Concurrent dual-band class-F load coupling network for applications at 1.7 and 2.14 GHz," IEEE Trans. Circuits and Syst. II, Express Briefs, Vol. 55, No. 3, 259-263, Mar. 2008.
    doi:10.1109/TCSII.2008.918993

    5. Colantonio, P., F. Giannini, R. Giofre, and L. Piazzon, "A design technique for concurrent dualband harmonic tuned power amplifier," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 11, 2545-2555, Nov. 2008.
    doi:10.1109/TMTT.2008.2004897

    6. Chen, J., S. He, F. You, R. Tong, and R. Peng, "Design of broadband high-efficiency power amplifiers based on a series of continuous modes," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 9, 631-633, Sept. 2014.
    doi:10.1109/LMWC.2014.2331457

    7. Xia, J., X. Zhu, and L. Zhang, "A linearized 2-3.5GHz highly efficient harmonic-tuned power amplifier exploiting stepped-impedance filtering matching network," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 9, 602-604, Sept. 2014.
    doi:10.1109/LMWC.2014.2324752

    8. Gao, L., X. Y. Zhang, S. Chen, and Q. Xue, "Compact power amplifier with bandpass response and high efficiency," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 10, 707-709, Oct. 2014.
    doi:10.1109/LMWC.2014.2340791

    9. Chen, K. and D. Peroulis, "A 3.1-GHz class-F power amplifier with 82% power-added-efficiency," IEEE Microw. Wireless Compon. Lett., Vol. 23, No. 8, 436-438, Aug. 2013.
    doi:10.1109/LMWC.2013.2271295

    10. Moon, J., S. Jee, J. Kim, J. Kim, and B. Kim, "Behaviors of class-F and class-F−1 amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 6, 1937-1951, Jun. 2012.
    doi:10.1109/TMTT.2012.2190749

    11. Canning, T., P. Tasker, and S. Cripps, "Waveform evidence of gate harmonic short circuit benefits for high efficiency X-band power amplifiers," IEEE Microw. Wireless Compon. Lett., Vol. 23, No. 8, 439-441, Aug. 2013.
    doi:10.1109/LMWC.2013.2272317

    12. Sharma, T., R. Darraji, and F. Ghannouchi, "A methodology for implementation of high-efficiency broadband power amplifiers with second-harmonic manipulation," IEEE Trans. Circuits Syst. II, Express Briefs, Vol. 63, No. 1, 54-58, Jan. 2016.
    doi:10.1109/TCSII.2015.2482139

    13. Huang, H., B. Zhang, C. Yu, J. Gao, Y. Wu, and Y. Liu, "Design of multioctave bandwidth power amplifier based on resistive second-harmonic impedance continuous class-F," IEEE Microw. Wireless Compon. Lett., Vol. 27, No. 9, 830-832, Sept. 2017.
    doi:10.1109/LMWC.2017.2734764

    14. Morimoto, Y., et al., "A multiharmonic absorption circuit using quasi-multilayered striplines for RF power amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 65, No. 1, 109-118, Jan. 2017.
    doi:10.1109/TMTT.2016.2614929

    15. Hayati, M., A. Sheikhi, and A. Grebennikov, "Class-F power amplifier with high power added efficiency using bowtie-shaped harmonic control circuit," IEEE Microw. Wireless Compon. Lett., Vol. 25, No. 2, 133-135, Feb. 2015.
    doi:10.1109/LMWC.2014.2382649

    16. Chen, K., T. Lee, and D. Peroulis, "Co-design of multi-band high-efficiency power amplifier and three-pole high-Q tunable filter," IEEE Microw. Wireless Compon. Lett., Vol. 23, No. 12, 647-649, Dec. 2013.
    doi:10.1109/LMWC.2013.2283876

    17. Son, J., Y. Park, I. Kim, J. Moon, and B. Kim, "Broadband saturated power amplifier with harmonic control circuits," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 3, 185-187, Mar. 2014.
    doi:10.1109/LMWC.2013.2292925

    18. Tuffy, N., L. Guan, A. Zhu, and T. J. Brazil, "A simplified broadband design methodology for linearized high-efficiency continuous class-F power amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 6, 1952-1963, Jun. 2012.
    doi:10.1109/TMTT.2012.2187534

    19. Carrubba, V., et al., "On the extension of the continuous class-F mode power amplifier," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 5, 1294-1303, May 2011.
    doi:10.1109/TMTT.2011.2117435

    20. Chen, K. and D. Peroulis, "Design of broadband highly efficient harmonic-tuned power amplifier using in-band continuous class-F-1/F mode-transferring," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 12, 4107-4116, Dec. 2012.
    doi:10.1109/TMTT.2012.2221142

    21. Kim, J. H., G. D. Jo, J. H. Oh, Y. H. Kim, K. C. Lee, and J. H. Jung, "Modeling and design methodology of high-efficiency class-F and class-F−1 power amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 1, 153-165, Jan. 2011.
    doi:10.1109/TMTT.2010.2090167

    22. Aggrawal, E., K. Rawat, and P. Roblin, "Investigating continuous class-F power amplifier using nonlinear embedding model," IEEE Microw. Wireless Compon. Lett., Vol. 27, No. 6, 593-595, Jun. 2017.
    doi:10.1109/LMWC.2017.2701316

    23. Carrubba, V., et al., "Exploring the design space for broadband PAs using the novel continuous inverse class-F mode," Proc. 41st Eur. Microw. Conf.(EuMC), 333-336, IEEE, Oct. 2011.

    24. Merrick, B. M., et al., "The continuous harmonic-tuned power amplifier," IEEE Microw. Wireless Compon. Lett., Vol. 25, No. 11, 736-738, Nov. 2015.
    doi:10.1109/LMWC.2015.2479850

    25. Sharma, T., et al., "Generalized continuous class-F harmonic tuned power amplifiers," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 3, 213-215, Mar. 2016.
    doi:10.1109/LMWC.2016.2524989

    26. Sharma, T., et al., "High-efficiency input and output harmonically engineered power amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 66, No. 2, 1002-1014, Feb. 2018.
    doi:10.1109/TMTT.2017.2756046