Vol. 81

Latest Volume
All Volumes
All Issues
2019-01-13

Shape Reconstruction of Unknown Targets Using Multifrequency Linear Sampling Method

By Mallikarjun Erramshetty
Progress In Electromagnetics Research Letters, Vol. 81, 77-83, 2019
doi:10.2528/PIERL18110102

Abstract

This paper aims to estimate the shape of microwave scattering objects using linear sampling method (LSM) with multifrequency data. LSM is a simple, reliable linear inverse algorithm and uses multiview multistatic single frequency scattered field data measured around target objects. Despite its simplicity and computational effectiveness, the output LSM results depend on the frequency of operation. To improve the LSM performance, the present work proposes a new formulation that incorporates frequency information in the LSM equation. As a result, LSM finds the target's shape by a simple solution to a linear inverse problem via multifrequency data. The output results are tested with various types of numerical examples of synthetic data as well as experimental data provided by the Institute of Fresnel.

Citation


Mallikarjun Erramshetty, "Shape Reconstruction of Unknown Targets Using Multifrequency Linear Sampling Method," Progress In Electromagnetics Research Letters, Vol. 81, 77-83, 2019.
doi:10.2528/PIERL18110102
http://www.jpier.org/PIERL/pier.php?paper=18110102

References


    1. Pastorino, M., Microwave Imaging, 82-91, Wiley, Hoboken, NJ, USA, 2010.
    doi:10.1002/9780470602492

    2. Colton, D., H. Haddar, and M. Piana, "The linear sampling method in inverse electromagnetic scattering theory," Inv. Prob., Vol. 19, 105-137, 2003.
    doi:10.1088/0266-5611/19/6/057

    3. Catapano, I., F. Soldovieri, and L. Crocco, "On the feasibility of the linear sampling method for 3D GPR surveys," Progress In Electromagnetics Research, Vol. 118, 185-203, 2011.
    doi:10.2528/PIER11042704

    4. Shelton, N. and K. F. Warnick, "Behavior of the regularized sampling inverse scattering method at internal resonance frequencies," Progress In Electromagnetics Research, Vol. 38, 29-45, 2002.
    doi:10.2528/PIER02092502

    5. Mallikarjun, E. and A. Bhattacharya, "Shape reconstruction of mixed boundary objects by linear sampling method," IEEE Trans. Antennas Propagat., Vol. 63, No. 7, 3077-3086, 2015.
    doi:10.1109/TAP.2015.2426679

    6. Sun, J., "An eigenvalue method using multiple frequency data for inverse scattering problems," Inv. Prob., Vol. 28, No. 8, 025012, 2012.
    doi:10.1088/0266-5611/28/2/025012

    7. Guzina, B., F. Cakoni, and C. Bellis, "On the multi-frequency obstacle reconstruction via the linear sampling method," Inv. Prob., Vol. 26, No. 12, 125005, 2010.
    doi:10.1088/0266-5611/26/12/125005

    8. Catapano, I., L. Crocco, and T. Isernia, "Improved sampling methods for shape reconstruction of 3-D buried targets," IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 10, 3265-3273, 2008.
    doi:10.1109/TGRS.2008.921745

    9. Colton, D. and H. Haddar, "An application of the reciprocity gap functional to inverse scattering theory," Inv. Probl., Vol. 21, No. 1, 383-398, 2005.
    doi:10.1088/0266-5611/21/1/023

    10. Bozza, G., M. Brignone, and M. Pastorino, "Application of the no-sampling linear sampling method to breast cancer detection," IEEE Trans. Antennas Propag., Vol. 57, No. 10, 2525-2534, Oct. 2010.

    11. Catapano, I. and L. Crocco, "An imaging method for concealed targets," IEEE Trans. Geosci. Remote Sens., Vol. 47, No. 5, 1301-1309, May 2009.
    doi:10.1109/TGRS.2008.2010773

    12. Belkebir, K. and M. Saillard, "Special section: Testing inversion algorithms against experimental data," Inv. Prob., Vol. 17, 1565-1571, 2001.
    doi:10.1088/0266-5611/17/6/301

    13. Geffrin, J. M., P. Sabouroux, and C. Eyraud, "Free space experimental scattering database continuation: Experimental set-up and measurement precision," Inv. Probl., Vol. 21, S117-S130, 2005.
    doi:10.1088/0266-5611/21/6/S09