Vol. 82
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-03-06
Higher-Order Moving Target Detection for Rotating Scanning Synthetic Aperture Interferometric Radiometer
By
Progress In Electromagnetics Research Letters, Vol. 82, 41-49, 2019
Abstract
Since passive millimeter wave synthetic aperture interferometric radiometer (SAIR) has the advantages of high spatial-resolution and large field of view, it is an attractive tool for wide area surveillance. Among the SAIRs, the Rotating Scanning SAIR (RS-SAIR) with linear sparse array is a popular system with low redundancy and high reliability. According to the detection mechanism of RS-SAIR, we extend RS-SAIR to deal with higher-order moving target detection (HMTD) for the first time in this paper. In the proposed HMTD method, the 2D time-projection image is constituted by the 1D projection images measured by RS-SAIR firstly. Then, the projection trajectory of moving target can be extracted from the time-projection image. Finally, the positions and motion parameters are estimated by fitting the moving target's trajectory. Simulation results indicate that the position and motion parameters of higher-order moving target can be well estimated with high real time and accuracy by the proposed HMTD method.
Citation
Jianfei Chen, Sheng Zhang, and Xiaowei Zhu, "Higher-Order Moving Target Detection for Rotating Scanning Synthetic Aperture Interferometric Radiometer," Progress In Electromagnetics Research Letters, Vol. 82, 41-49, 2019.
doi:10.2528/PIERL18112804
References

1. Yamaguchi, R., S. Kidera, and T. Kirimoto, "Accurate imaging method for moving target with arbitrary shape for multi-static UWB radar," IEICE Transactions on Communications, Vol. E96b, 2014-2023, Jul. 2013.

2. Wang, L. B., D. W. Wang, J. J. Li, J. Xu, C. Xie, and L. Wang, "Ground moving target detection and imaging using a virtual multichannel scheme in HRWS mode," IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, 5028-5043, Sep. 2016.
doi:10.1109/TGRS.2016.2544846

3. Deng, L. Z. and H. Zhu, "Moving point target detection based on clutter suppression using spatiotemporal local increment coding," Electronics Letters, Vol. 51, 626-627, Apr. 16, 2015.

4. Minaeian, S., J. Liu, and Y. J. Son, "Effective and efficient detection of moving targets from a UAV’s camera," IEEE Transactions on Intelligent Transportation Systems, Vol. 19, No. 2, 497-506, 2018.
doi:10.1109/TITS.2017.2782790

5. Wan, M. J., G. H. Gu, W. X. Qian, K. Ren, Q. Chen, H. Zhang, et al. "Total variation regularization term-based low-rank and sparse matrix representation model for infrared moving target tracking," Remote Sensing, Vol. 10, No. 4, 510, Apr. 2018.
doi:10.3390/rs10040510

6. Nanzer, J. A., "Millimeter-wave interferometric angular velocity detection," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, 4128-4136, Dec. 2010.

7. Xia, B., J. Xu, Y. N. Peng, and X. G. Xia, "Doppler ambiguity resolving for SAR moving targets via linear migration correction," Electronics Letters, Vol. 47, 464-465, 2011.
doi:10.1049/el.2010.3615

8. Waqas, M., S. Kidera, and T. Kirimoto, "PCA-based detection algorithm of moving target buried in clutter in doppler frequency domain," IEICE Transactions on Communications, Vol. E94b, 3190-3194, Nov. 2011.

9. Yang, J., C. Liu, and Y. F. Wang, "Detection and imaging of ground moving targets with real SAR data," Ieee Transactions on Geoscience and Remote Sensing, Vol. 53, 920-932, Feb. 2015.
doi:10.1109/TGRS.2014.2330456

10. Li, J., Y. Huang, G. S. Liao, and J. W. Xu, "Moving target detection via efficient ATI-GoDec approach for multichannel SAR system," IEEE Geoscience and Remote Sensing Letters, Vol. 13, 1320-1324, Sep. 2016.
doi:10.1109/LGRS.2016.2584083

11. Zhang, Y. L., W. Miao, Z. H. Lin, H. Gao, and S. C. Shi, "Millimeter-wave InSAR image reconstruction approach by total variation regularized matrix completion," Remote Sensing, Vol. 10, No. 7, 1053, Jul. 2018.
doi:10.3390/rs10071053

12. Demirci, S., H. Cetinkaya, E. Yigit, C. Ozdemir, and A. A. Vertiy, "A study on millimeter-wave imaging of concealed objects: Application using back-projection algorithm," Progress In Electromagnetics Research, Vol. 128, 457-477, 2012.
doi:10.2528/PIER12050210

13. Appleby, R. and R. N. Anderton, "Millimeter-wave and submillimeter-wave imaging for security and surveillance," Proceedings of the IEEE, Vol. 95, 1683-1690, Aug. 2007.
doi:10.1109/JPROC.2007.898832

14. Martin-Neira, M., D. M. LeVine, Y. Kerr, N. Skou, M. Peichl, A. Camps, et al. "Microwave interferometric radiometry in remote sensing: An invited historical review," Radio Science, Vol. 49, 415-449, Jun. 2014.
doi:10.1002/2013RS005230

15. Torres, F., A. B. Tanner, S. T. Brown, and B. H. Lambrigsten, "Analysis of array distortion in a microwave interferometric radiometer: Application to the GeoSTAR project," IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, 1958-1966, Jul. 2007.
doi:10.1109/TGRS.2007.898093

16. Rautiainen, K., J. Kainulainen, T. Auer, J. Pihlflyckt, J. Kettunen, and M. T. Hallikainen, "Helsinki university of technology L-band airborne synthetic aperture radiometer," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, 717-726, Mar. 2008.
doi:10.1109/TGRS.2007.914805

17. Wu, J., C. Zhang, H. Liu, and J. Y. Yan, "Performance analysis of circular antenna array for microwave interferometric radiometers," IEEE Transactions on Geoscience and Remote Sensing, Vol. 55, 3261-3271, Jun. 2017.
doi:10.1109/TGRS.2017.2667042

18. Lucotte, B. M., B. Grafulla-Gonzalez, and A. R. Harvey, "Array rotation aperture synthesis for short-range imaging at millimeter wavelengths," Radio Science, Vol. 44, n/a-n/a, 2009.

19. Tanner, A., T. Gaier, W. Imbriale, P. Kangaslahti, B. Lambrigtsen, and B. Lim, "A dual-gain design for the geostationary synthetic thinned array radiometer," IEEE Geoscience and Remote Sensing Letters, Vol. 11, 1340-1344, Aug. 2014.
doi:10.1109/LGRS.2013.2293318

20. Zhou, X., H. J. Sun, J. W. He, and X. Lu, "NUFFT-based iterative reconstruction algorithm for synthetic aperture imaging radiometers," IEEE Geoscience and Remote Sensing Letters, Vol. 6, 273-276, Apr. 2009.
doi:10.1109/LGRS.2008.2012123

21. Fessler, J. A. and B. P. Sutton, "Nonuniform fast Fourier transforms using min-max interpolation," IEEE Transactions on Signal Processing, Vol. 51, 560-574, Feb. 2003.
doi:10.1109/TSP.2002.807005

22. Camps, A., M. Vall-Ilossera, I. Corbella, F. Torres, and N. Duffo, "Angular and radiometric resolution of Y-shaped nonuniform synthetic aperture radiometers for earth observation," IEEE Geoscience and Remote Sensing Letters, Vol. 5, 793-795, Oct. 2008.

23. Feng, L., Q. X. Li, K. Chen, Y. F. Li, X. L. Tong, X. Q. Wang, et al. "The gridding method for image reconstruction of nonuniform aperture synthesis radiometers," IEEE Geoscience and Remote Sensing Letters, Vol. 12, 274-278, Feb. 2015.
doi:10.1109/LGRS.2014.2335413

24. Li, S., X. Zhou, B. Ren, H.-J. Sun, and X. Lv, "A compressive sensing approach for synthetic aperture imaging radiometers," Progress In Electromagnetics Research, Vol. 135, 583-599, 2013.
doi:10.2528/PIER12110603

25. Zhang, C., J. Wu, H. Liu, and J. Yan, "Imaging algorithm for synthetic aperture interferometric radiometer in near field," Science China Technological Sciences, Vol. 54, 2224-2231, 2011.
doi:10.1007/s11431-011-4403-3

26. Chen, J., Y. Li, J. Wang, Y. Li, and Y. Zhang, "An accurate imaging algorithm for millimeter wave synthetic aperture imaging radiometer in near-field," Progress In Electromagnetics Research, Vol. 141, 517-535, 2013.
doi:10.2528/PIER13060702

27. Butora, R., M. Martin-Neira, and A.-L. Rivada-Antich, "Fringe-washing function calibration in aperture synthesis microwave radiometry," Radio Science, Vol. 38, 15/1-15/15, 2003.

28. Tanner, A. B., B. Lambrigsten, T. Gaier, and F. Torres, Near Field Characterization of the GeoSTAR Demonstrator, Jet Propulsion Laboratory, National Aeronautics and Space Administration, Pasadena, CA, 2006.

29. Camps, A., A. Cardama, and D. Infantes, "Synthesis of large low-redundancy linear arrays," IEEE Transactions on Antennas and Propagation, Vol. 49, 1881-1883, Dec. 2001.
doi:10.1109/8.982474