Vol. 81

Latest Volume
All Volumes
All Issues
2019-01-14

A Novel Antenna Feeding Network with Separately Resonant Frequency and Impedance Matching Tunable Capability

By Linzhi Liu, Qian-Yin Xiang, Dengyao Tian, and Quanyuan Feng
Progress In Electromagnetics Research Letters, Vol. 81, 85-91, 2019
doi:10.2528/PIERL18120709

Abstract

A novel C-L-L π-type feeding network is presented to tune the working frequency and impedance matching of antenna. Two varactors are used in the tunable feeding network as tunable elements for antenna resonating frequency and impedance matching tuning. The tunable capability of the network is studied, and a patch antenna is used to verify the tunable feeding network. The tunable feeding network is designed, fabricated and measured. The measurement results show that the patch antenna can be tuned from 630 MHz to 1.04 GHz with a maximum impedance bandwidth of 24 MHz of S11 less than -10 dB.

Citation


Linzhi Liu, Qian-Yin Xiang, Dengyao Tian, and Quanyuan Feng, "A Novel Antenna Feeding Network with Separately Resonant Frequency and Impedance Matching Tunable Capability," Progress In Electromagnetics Research Letters, Vol. 81, 85-91, 2019.
doi:10.2528/PIERL18120709
http://www.jpier.org/PIERL/pier.php?paper=18120709

References


    1. Lee, W.-S., H.-L. Lee, K.-S. Oh, and J.-W. Yu, "Switchable distance-based impedance matching networks for a tunable HF system," Progress In Electromagnetics Research, Vol. 128, 19-34, 2012.
    doi:10.2528/PIER12041205

    2. Liu, S.-F., X.-W. Shi, and S.-D. Liu, "Study on the impedance-matching technique for hightemperature superconducting microstrip antennas," Progress In Electromagnetics Research, Vol. 77, 281-284, 2007.
    doi:10.2528/PIER07082502

    3. Wang, H. and A. Hajimiri, "A CMOS broadband power amplifier with a transformer-based highorder output matching network," IEEE Journal of Solid-State Circuits, Vol. 45, No. 12, December 2010.
    doi:10.1109/JSSC.2010.2077171

    4. Zhao, Y., et al., "Power-handling capacity and nonlinearity analysis for distributed electronic impedance synthesizer," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 65, No. 4, 1340-1348, 2018.
    doi:10.1109/TCSI.2017.2756020

    5. Li, H.-Y., et al., "CPW-fed frequency-reconfigurable slot-loop antenna with a tunable matching network based on ferroelectric varactors," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 614-617, 2015.
    doi:10.1109/LAWP.2014.2375334

    6. Li, Y., et al., "A compact DVB-H antenna with varactor-tuned matching circuit," Microwave and Optical Technology Letters, Vol. 52, No. 8, 1786-1789, 2010.
    doi:10.1002/mop.25317

    7. Haitao, Z., G. Huai, and L. Guann-Pyng, "Broad-band power amplifier with a novel tunable output matching network," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 11, 3606-3614, 2005.
    doi:10.1109/TMTT.2005.858374

    8. Firrao, E. L., et al., "Hardware implementation overhead of switchable matching networks," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 64, No. 5, 1152-1163, 2017.
    doi:10.1109/TCSI.2016.2644983

    9. Barani, N., J. F. Harvey, and K. Sarabandi, "Fragmented antenna realization using coupled small radiating elements," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 4, 1725-1735, 2018.
    doi:10.1109/TAP.2018.2806397

    10. Song, M., et al., "An energy-efficient antenna impedance detection using electrical balance for single-step on-chip tunable matching in wearable/implantable applications," IEEE Transactions on Biomedical Circuits and Systems, Vol. 11, No. 6, 1236-1244, December 2017.
    doi:10.1109/TBCAS.2017.2771500

    11. Chen, Y. and D. Manteuffel, "A tunable decoupling and matching concept for compact mobile terminal antennas," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 4, 1570-1578, April 2017.
    doi:10.1109/TAP.2017.2670318

    12. Kabiri, Y., P. Gardner, and C. Constantinou, "Injection matched approach for wideband tunable electrically small antennas," IET Microwaves, Antennas & Propagation, Vol. 8, No. 11, 878-886, August 19, 2014.
    doi:10.1049/iet-map.2013.0700

    13. Im, D. and K. Lee, "Highly linear silicon-on-insulator CMOS digitally programmable capacitor array for tunable antenna matching circuits," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 12, 665-667, December 2013.
    doi:10.1109/LMWC.2013.2284776

    14. Tang, X., K. Mouthaan, and J. C. Coetzee, "Tunable decoupling and matching network for diversity enhancement of closely spaced antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 268-271, 2012.
    doi:10.1109/LAWP.2012.2188773

    15. Maktoomi, M. A., M. S. Hashmi, and V. Panwar, "A dual-frequency matching network for FDCLs using dual-band λ/4-lines," Progress In Electromagnetics Research Letters, Vol. 52, 23-30, 2015.
    doi:10.2528/PIERL15020405

    16. Wang, Z., J. Liu, H. Li, and Y.-Z. Yin, "A UHF RFID antenna using double-tuned impedance matching for bandwidth enhancement," Progress In Electromagnetics Research Letters, Vol. 70, 59-66, 2017.
    doi:10.2528/PIERL17070102

    17. Du, Z., K. Gong, and J. S. Fu, "A novel compact wide-band planar antenna for mobile handsets," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 2, 613-619, February 2006.
    doi:10.1109/TAP.2005.863088

    18. Bahl, I. J., Fundamental of RF and Microwave Transistor Amplifier, John Wiley and Sons, Inc., 2009.
    doi:10.1002/9780470462348.ch22