Vol. 87
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-09-05
Validation of Shielded Cable Modeling in Xyce Based on Transmission-Line Theory
By
Progress In Electromagnetics Research Letters, Vol. 87, 51-57, 2019
Abstract
Cables and electronic devices typically employ electromagnetic shields to prevent coupling from external radiation. The imperfect nature of these shields allows external electric and magnetic fields to induce unwanted currents and voltages on the inner conductor by penetrating into the interior regions of the cable. In this paper, we verify a circuit model tool using a previously proposed analytic model [1], by evaluating induced currents and voltages on the inner conductor of the shielded cable. Comparisons with experiments are also provided, aimed to validate the proposed circuit model. We foresee that this circuit model will enable coupling between electromagnetic and circuit simulations.
Citation
Salvatore Campione, Aaron J. Pung, Larry Kevin Warne, William L. Langston, Ting Mei, and Howard Gerald Hudson, "Validation of Shielded Cable Modeling in Xyce Based on Transmission-Line Theory," Progress In Electromagnetics Research Letters, Vol. 87, 51-57, 2019.
doi:10.2528/PIERL19060311
References

1. Campione, S., L. I. Basilio, L. K. Warne, and W. L. Langston, "Shielding effectiveness of multiple-shield cables with arbitrary terminations via transmission line analysis," Progress In Electromagnetics Research C, Vol. 65, 93-102, 2016.

2. Casey, K. F., "Electromagnetic shielding behavior of wire-mesh screens," IEEE Trans. on Elec. Comp., Vol. 30, No. 3, 298-306, 1988.

3. Denny, H. W. and K. R. Shouse, "EMI shielding of conductive gaskets in corrosive environments," IEEE Int. Symp. on Elec. Comp., 20-24, Washington, D.C., 1990.

4. Klinkenbusch, L., "On the effectiveness of enclosures," IEEE Trans. on Elec. Comp., Vol. 47, No. 3, 589-601, 2005.

5. Vance, E. F., "Shielding effectiveness of braided shields," IEEE Trans. on Elec. Comp., Vol. 17, No. 2, 71-77, 1975.

6. Vance, E. F., Coupling to Shielded Cables, R. E. Krieger, 1987.

7. Lee, K. S. H., EMP Interaction: Principles, Techniques, and Reference Data, Hemisphere Publishing Corp., Washington, 1986.

8. Celozzi, S., R. Araneo, and G. Lovat, Electromagnetic Shielding, John Wiley and Sons, 2008.

9. Tesche, F. M., M. V. Ianoz, and T. Karlsson, EMC Analysis Methods and Computational Models, John Wiley and Sons Inc., New York, 1997.

10. Xyce Parallel Circuit Simulator, http://xyce.sandia.gov.

11. Kley, T., "Optimized single-braided cable shields," IEEE Trans. on Elec. Comp., Vol. 35, 1-9, 1993.

12. Warne, L. K., W. L. Langston, L. I. Basilio, and W. A. Johnson, "First principles cable braid electromagnetic penetration model," Progress In Electromagnetics Research B, Vol. 66, 63-89, 2016.

13. Campione, S., L. K. Warne, W. L. Langston, W. A. Johnson, R. S. Coats, and L. I. Basilio, "Multipole-based cable braid electromagnetic penetration model: Electric penetration case," IEEE Trans. on Elec. Comp., Vol. 60, No. 2, 444-452, 2018.

14. Campione, S., L. K. Warne, W. L. Langston, and L. I. Basilio, "First principles model of electric cable braid penetration with dielectrics," Progress In Electromagnetics Research C, Vol. 82, 1-11, 2018.

15. Campione, S., L. K. Warne, and W. L. Langston, "Translation of exterior electromagnetic environment to pin-level voltages and currents on cables,", Sandia National Laboratories Report, SAND2018-12274, Albuquerque, NM, USA, 2018.

16. Warne, L. K., L. I. Basilio, W. L. Langston, K. C. Chen, H. G. Hudson, M. E.Morris, S. L. Stronach, W. A. Johnson, and W. Derr, "Electromagnetic coupling into two standard calibration shields on the Sandia cable tester,", Sandia National Laboratories Report, SAND2014-0842, Albuquerque, NM, USA, 2014.

17. Fang, C. H., S. Q. Zheng, H. Tan, D. G. Xie, and Q. Zhang, "Shielding effectiveness measurements on enclosures with various apertures by both mode-tuned reverberation chamber and GTEM cell methodologies," Progress In Electromagnetics Research B, Vol. 2, 103-114, 2008.

18. "IEEE Standard Method for Measuring the Effectiveness of Electromagnetic Shielding Enclosures," IEEE Std 299-2006 (Revision of IEEE Std 299-1997), 1-52, Feb. 28, 2007.